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Abstract This paper analyzes how electricity merchants' market impact affects merchants' profit. Energy 

storage has long been studied for its role in maximizing profit, and merchant decisions are assumed to have 

no impact on market prices. However, the trading decisions of large-scale energy storage merchants (e.g., 

pumped storage hydro) will affect the market prices. This paper employs dynamic programming theory to 

investigate merchants' optimal economic dispatch considering the market impact and physical 

characteristics of storage systems. Our findings show that the State-of-Charge (SOC) based analytical 

solution significantly facilitates energy storage merchants' decision-making. The SOC range is segmented 

into three regions by two optimal SOC reference points, which depend on the available energy in storage, 

given prices, and market impact. By comparing the current storage SOC with the reference points, the 

merchant can get the corresponding optimal actions. We analytically show that if the merchant neglects the 

market impact power market, she will exaggerate her expectation profit when the price-taker and price-

maker merchants have the same generating and pumping upper limits. The profit-maximizing merchant 

must, therefore, assay to balance the trade-off correctly between the intensity of market impact and the 

dispatched power. Our findings are verified by numerical simulation, and results demonstrate the 

ramifications for electricity merchants in energy arbitrage decisions. 

Keywords: energy, electricity storage and dispatch, market impact, power market, dynamic programming 

 

 

  

https://doi.org/10.1016/j.cie.2021.107212
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

 

 

1 Introduction 

The last decades have seen a boom in global renewable and clean energy resources (i.e., wind, solar, 

etc.) in the United States and worldwide. However, high uncertainty and intermittency of renewable energy 

and low forecast reliability are caused by the strong dependence on the weather (Qi et al., 2015, Zhou et al., 

2019). Since electricity supply and demand must be matched in real-time, dealing with electricity surpluses 

or insufficiency is critical. As the imbalance of electricity can be dealt with storage, storing surpluses for 

future resale is a common strategy for commodities (Williams and 1991). With the control of electricity 

storage, the electricity merchant can not only regulate the intermittency of the energy and meet the demand 

of the market but also reduce costs and maximize arbitrage gains by controlling the stored energy, for 

example, buying electricity when the price is low and selling power when the price is high. 

There are various energy storage technologies such as solar-thermal energy storage (Haslett, 1979), 

pumped storage hydropower (PSH) plant (Deane et al., 2010), battery storage (Cheng and Powell, 2018). 

Hydropower has long remained the largest source of renewable electricity generation, accounting for 

roughly 40% of U.S. renewable electricity generation in 2018, remaining the most significant contributor 

to U.S. energy storage, with an installed capacity of 21.6 GW or roughly 95% of all commercial storage 

capacity in the United States (Water Power Technologies Office, DOE, 2020). In our paper, we decide to 

discuss PSH and battery storage systems, both having their physical constraints, thus energy capacity of the 

storage facility, pumping/charging and generating/discharging capacity, facility pumping/charging and 

generating/discharging efficiency, and transmission efficiency, are all needed to take into consideration 

when modeling (Steffen and Weber, 2016；Zhou et al., 2016). 

Traditional energy inventory research focuses on optimal policy or bidding decisions in modeling 

energy storage, some on PSH (Yeh, 1985, Löhndorf et al., 2013, Richmond et al., 2014), and some on 

battery storage (Lifshitz and Weiss, 2015, Zhou et al., 2016), allowing for the consideration of their physical 

constraints. According to the given market price, the merchant can decide on buying or selling electricity 

and obtaining the quantity according to the optimal policy. There are various methods to model the storage 

problem: online heuristic approach (Zhang and Wirth,2010), dynamic programming (Jiang and Powell, 

2015), stochastic optimization in shaping energy (Powell and Meisel 2016), co-optimizing energy storage 
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for energy arbitrage using convex relaxations (Hashmi et al., 2019), a control scheme for a wind farm with 

battery energy storage using sequential stochastic decision process (Kiedanski et al., 2019), charging and 

discharging algorithm for electric vehicles based on reinforcement learning (Lee et al., 2020), etc. 

Most models (Jiang and Powell, 2011; Zhou et al., 2016; Zhou et al., 2019), however, assume that 

energy storage cannot be stored on a large-scale, and merchant's trading decisions do not affect market 

prices, which are called price-taker (PT). That is, according to the given price at each period, the merchant 

decides to buy or sell a certain amount of electricity at a price that is not affected by this merchant's activity. 

Nonetheless, the trading decisions of the large-scale energy storage (e.g., PSH) merchant will impact the 

market prices (Felix et al., 2012, Cruise et al., 2019), which terms she is a price-maker (PM). In detail, 

when the large-scale energy storage merchant chooses to buy electricity, the market load will increase, thus 

leading to the rising of market prices. On the contrary, selling power by a price-marker merchant will 

increase the supply, resulting in a decrease in market prices. We should note the difference between the 

optimal policies under two perspectives. Our paper addresses this critical issue.  

In this paper, we focus on the application context of a price maker PSH owner or a battery owner, 

namely an electricity merchant (to facilitate the exposition, hereafter we use feminine pronouns when 

referring to the electricity merchant) using a storage strategy to manage electricity in the wholesale market. 

The storage facility's main features include the storage facility and pumping/generating capacity limits, a 

time-independent efficiency of energy inventoried in the storage facility dissipating during one period. We 

also include operational costs when trading electricity on the market.  

With the motivations mentioned above, we aim to address the following two questions (1) What is the 

benefit of a price maker in electricity markets? Furthermore, (2) What is the difference in the optimal policy 

between both price taker and price maker? Toward that end, we first adjust the price by a linear function of 

the amount of the energy traded by the storage in the reward function to obtain the optimal policy 

considering the market impact. We investigate the electricity merchant's optimal decisions by employing 

the dynamic programming theory to maximize the profit according to the given available energy level/SOC 

in the storage, the current electricity prices, and the market impact. To the best of our knowledge, this is 

the first paper to solve the storage problem from the respective price-maker using dynamic programming.  
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Our study makes three principal contributions: First, for a price maker electricity merchant, the optimal 

trading policy at each decision time is deterministically determined by two optimal SOC reference points

p*

t 1E +
and g*

t 1E +
, which depend on the available energy tE in the storage, the current power prices tP , and the 

market impact. Considering the efficiency loss or operating cost, the feasible energy storage level or SOC 

can be divided into three regions: for the positive electricity prices, if there is less energy in the storage than 

the respective reference point (i.e., p*

t t 1E E + ), the merchant should buy power from the market and bring 

the SOC up to p*

t 1E +
, and if there is more energy in the storage than the respective reference point (i.e., 

g*

t t 1E E +  ), the merchant should sell power to the market and bring the SOC down to g*

t 1E +
as close as 

possible. However, if the stored energy is within the boundary set forth by the two reference points (i.e., 

p* g*

t 1 t t 1E E E+ +  ), the merchant should do nothing (i.e., stay in the idle mode). Under ideal condition, if both 

efficiency loss and operating costs are not considered, the feasible energy storage level or SOC can only be 

divided into two regions: buying-and-pumping and generating-and-selling.  

Second, compared with the traditional study, when both price taker and price maker hold the same 

generating/pumping max capacity limits, the market impact will increase the cost of pumping, reducing the 

revenue generated in each period, which will reduce the optimal expectation profit. If the market impact is 

small, we will get similar optimal results, including unit commitment (UC) and economy dispatch (ED), as 

the scenario price-taker. When the market impact is large enough, the electricity merchant should reduce 

the power transaction quantity (i.e., amount of energy) at each period to lower the negative effect of market 

impact. The profit-maximizing merchant must, therefore, assay to perfectly balance the trade-off between 

the intensity of market impact and the power transaction quantity.  

Third, we extend our research to consider how optimal scheduling is affected by water (energy) value 

at the end of the optimization horizon. Although both the value function of merchant and optimal SOC 

reference points in this extension are influenced by the value of water (energy) at the end of the optimization 

horizon, we can employ similar analytical procedures to derive insights for the profit-maximizing merchant. 

We organize the remaining paper as follows: In Section 2, we review the literature on energy storage 

modeling and its impact on market prices. We then formulate the model in Section 3. Considering the 

market impact of the trading decision on prices, we apply them to the objective profit functions and give 
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the optimal solution in Section 4. Section 5 verifies the proposed results based on synthesis data and real 

data of electricity prices from MISO (Midcontinent Independent System Operator, USA, 2020) which is 

one of Independent System Operators (ISOs) in North America and runs one of the largest electricity 

markets in the world. We conclude in Section 6 with a summary of our findings and some suggestions for 

future research. 

 

2 Literature review 

Our work is closely related to two aspects of the energy storage management and dispatch literature: energy 

storage modeling and market impact on the power market. 

 

2.1 Energy Storage modeling 

Yeh (1985) presents a general review of the mathematical models and simulations for reservoir operations. 

Brown et al. (2008) focus on using wind generators combined with PSH to meet the market electricity 

demand to minimize daily operating costs, while Castronuovo and Lopes (2004) apply the same storage 

system to figure out how to maximize the daily profit. All the above studies follow the principle that buying 

occurs when electricity demand is low, and electricity prices are low, selling occurs when electricity 

demand is high, and electricity prices are high (Deane et al., 2010). Zhang and Wirth (2010) developed an 

online heuristic algorithm to smooth wind power variations with battery storage. Thus, the goal of the study 

is to find a policy that allows the electricity merchant to decide and compute the amount of energy (i.e., 

energy transaction quantity) to sell or buy based on the state of the environment period.   

Aside from PSH systems, the battery is a more conventional but more expensive form of energy 

storage with some constraints. Considering the nature of the battery and other stochastic information like 

electricity prices, load demand, and regulation signals, Cheng and Powell (2018) propose a dynamic 

programming approach to solve the operation problem of the battery to charge and discharge to maximize 

arbitrage gains. Considering the battery life, Hashmi et al. (2018) propose an optimal arbitrage algorithm 

to control the number battery operations cycles to maximize the battery life and the arbitrage return. 

Nguyen et al. (2018) focus on the characteristic of charge or discharge efficiency of energy storage and 

https://www.misoenergy.org/markets-and-operations/real-time--market-data/market-reports/
https://www.misoenergy.org/markets-and-operations/real-time--market-data/market-reports/
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propose nonlinear energy flow models based on nonlinear efficiency models and verify them by a 

Vanadium Redox Flow Battery (VRFB) system. To simplify our model, we take charge or discharge 

efficiency as a constant value.  

Another stream of the literature concentrates on using storage to make better bidding decisions relative 

to periods in a market (e.g., Bathurst and Strbac 2003, Kim and Powell 2011, Löhndorf et al., 2013, Jiang 

and Powell 2015). In this paper, we assume that any electricity offered to the market is accepted; thus, 

different from the above literature, we do not consider bidding problems. Wiser and Bolinger (2015), in 

some U.S. electricity markets, wind generators are treated as "must-run" in normal conditions, and 38% of 

the wind capacity developed in the U.S. in 2009 was sold through merchant agreements involving no 

bidding; thus, our assumption is acceptable. 

 

2.2 Market impact on the power market 

The present papers study the optimal control of storage by buying electricity when it is cheap and selling it 

when it is expensive to assume that the energy storage system is small relative to the market. The merchant’s 

decisions do not affect market prices. (Secomand, 2010) propose the optimal inventory-trading policy with 

both space and injection or withdrawal capacity limits from the perspective of price-taker for a general case 

of the warehouse problem. Steffen and Weber (2016) consider the price-taker case of linear cost functions 

in the electricity market where electricity prices continue to change and determine how pumped storage 

devices maximize economic benefits. Following the perspective of price-taker, Zhou et al. (2016) model, 

energy arbitrage's price problem and take negative prices into account. Later, Zhou et al. (2019) extend the 

optimal structure when prices are negative and apply the stochastic dynamic programming to solve a co-

optimization problem. From the perspective of price-taker, various methods are using to model the problem, 

such as dynamic programming (Zhou et al., 2016; 2019), stochastic decision process (Kiedanski et al., 

2019), and mixed-integer linear programming (Chazarra et al., 2018; Zhan et al., 2020), these papers, 

however, did not consider market impact.  

The large-scale energy storage (e.g., PSH) system may be captured in price arbitrage, then the trading 

decisions of the merchant are of sufficient magnitude as to have a market impact (Felix et al., 2012, Cruise et 
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al., 2019), which means that it serves as a price-maker. Felix et al. (2012) are the pioneers who offer an 

approach to storage valuation incorporating the market impact. Wei and Guan (2014) develop the optimal 

power storage control strategy for risk-neutral and risk-averse energy merchants to participate in both day-

ahead and real-time market to maximize profit considering the impact of transaction decisions on the market. 

Steeger and Rebennack (2015) address price-maker hydropower companies' bidding strategy using game 

theory in the deregulated market. Cruise et al. (2019) apply the Lagrangian approach to optimize the 

deterministic model with stochastic prices to establish decisions and the forecast horizons when storage 

trading affects the market price. Different from the Lagrangian approach, we use dynamic programming to 

extend our storage model by allowing for the market impact when storage trading affects electricity prices 

(i.e., the respective price maker). 

Unlike the studies described, our paper considers the effect of the market impact on the electricity 

trading decision. This approach is motivated by the observations reported in Felix et al. (2012) and Cruise et 

al. (2019). Considering the market impact will transform the traditional linear reward functions to nonlinear 

functions, it brings more challenges to achieve the analytical results.  

 

3 Model Formulation 

We consider an electricity merchant (PSH or battery owner) to use a storage strategy to manage electricity 

in an electricity wholesale market and thus buy and sell electricity. We work in discrete time, in which the 

merchant makes operational and trading decisions periodically over a finite horizon in each period 

t {1,2, ,T} . We assume the PSH storage (i.e., upper reservoir) has the maximum energy capacity E  

(e.g., the total energy which could be stored) and the minimum energy level E , where, E E 0  , which 

means the storage capacity is finite. We also assume the PSH storage or battery has generating or 

discharging and pumping or charging capacity constraints. We denote 
PQ   and 

pQ  as the 

pumping/charging upper limit and lower limit that can be purchased from to market in each period, 
gQ and 

gQ  as the generating/discharging upper limit and lower limit that can be sold to the market in each period, 

respectively. This quantity is also referred to as the pumping or generating power max capacity if one does 
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not consider the energy loss when pumping or generating the PSH. To maintain our model’s tractability, 

we adopt the conventional assumption (Kim and Powell, 2011; Jiang and Powell, 2015) that g PQ =Q =0 . 

Next, we will consider three types of efficiency with storage. The first of these is a fraction tη , a time-

independent efficiency, of energy inventoried in the storage facility, dissipates during one period, t1 η−  is 

the self-discharging rate of the battery, or the evaporation and leakage as well as spill rate of the PSH, 

equivalently, tη [0,1]  . The second of these are both α   and β   represent the efficiency of pumping 

mode and the efficiency of generating mode, where, α,β (0,1]  . Both 1 α−   and 1 β−   represent the 

fraction of energy loss of pumping mode and generating mode, respectively. The third type of efficiency is 

ρ representing the fraction of transmission efficiency, that is, the ratio of electricity flowing out of the 

transmission line to that flowing into this line, so that 1 ρ−  is the line loss rate. Losses are incurred at the 

end of the transmission line in either direction, where, ρ (0,1] . 

Based on the above discussion, we know that quantities 
PQ αρ  and 

gβρ Q  are the net pumping 

power capacity and gross generating power capacity. Different types of storage facilities can be modeled 

by varying the value of 
PQ αρ   and 

gβρ Q  . If 
gβρ Q E E  −   or 

PQ αρ E E −   represents slow 

storage, and the case 
gβρ Q E E  −  or 

PQ αρ E E −  represents fast storage. In this paper, we target the 

optimal policy structure/decision rule for slow storage (i.e., a storage facility that cannot be fully emptied 

and filled up in one decision period) (Cruise et al., 2019; Secomandi, 2010; Zhou et al., 2019). Fast storage 

is a special case for slow storage. 

The electricity price in period t is denoted by tP  (dollars per unit energy). Both buying and selling 

prices at time t are shown by tP  conveniently for a price taker. The sequential levels of the price by a 

vector of ( )1 2 TP= P ,P , ,P . The decision for each period t is donated by 
g

tq or 
p

tq  to represent the energy 

change (action) between period t and t+1 before accounting the efficiency loss. The quantity
g

tq βρ is the 

energy released from the storage to generate the power to sell to the market. The quantity 
p

tq αρ is the 

energy/power bought from the market to pump the water to refill the upper reservoir of PSH or battery 

storage. During pumping/charging and generating/discharging, the electricity merchant needs to spend 

additional maintenance and operating costs. For the battery owner, the battery cycle life, a key issue when 

considering economic feasibility, varies between battery technologies and the operating conditions. In 

javascript:;
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practice, the cost of maintenance and degradation is lower at first; after some point, costs increase much 

more rapidly. This paper lets c (dollars per unit energy) denotes the maintenance and operating cost for PSH 

or the battery's degradation cost. Under the current practice of MISO, the operating cost of PSH is close to 

zero (Huang et al.,2020). To maintain the tractability of our model, in this paper, we assume the energy 

storage has a linear operating cost of discharging/generating and pumping/charging. 

Following the assumption of (Cruise et al., 2019), if the storage decision has a market impact, which 

means when the trading decisions of the electricity merchant are sufficiently influential (i.e., large-scale 

storage) to have a market impact on power prices, the price at which the merchant buys or sells energy can 

be approximated by a linear function of the amount of the electricity traded by the storage merchant. The 

adjusted prices are shown as follows: 

p

pt

t t t

t

g g

t t t t

q
(P λP ) (q 0) 

ˆ αρP =

(P λP q βρ) (q 0)


+ 




− 

                             (1) 

In equation (1), the tλP  is a measure of the market impact of the storage on the price at time t. 

Parameter λ 0  represents the intensity of the market impact of the merchant on power prices. If λ=0 , 

this special case corresponds to the situation of price-taker. tP̂   are the adjusted prices resulting from 

buying-and-pumping the storage by units of 
p

tq αρ  energy/power from the market and generating-and-

selling the storage by units of 
g

tq βρ  energy/power to market, respectively.  

Thus, the rewards function 
p g

t t t
ˆR(q ,q ,P )  from performing decision pumping

p

tq   and generating
g

tq  , 

when the prices are tP̂  defined as follows from the respective of price-maker: 

p

p p pt

t t t t tp g

t t t

g g g g

t t t t t t

q
(P λP ) q / αρ c(q / αρ) (q 0)

ˆ αρR(q ,q ,P )

(P λP q βρ) q βρ c(q βρ) (q 0) 


− +  − 

= 


−   −  

                (2) 

The first line in equation (2) represents the rewards when the electricity merchant releases the energy 

from storage to generate the power and sell to the market; for example, the 
g

t tP q β ρ    and 
g

tc q β ρ    

represent the revenue obtained and operating cost paid for her at time t for 
g

tq β ρ  units of energy (power), 

respectively. The second line 
p

t tP q / αρ indicates the cost when the electricity merchant buys power from 
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the market to pump into the storage, and 
p

tc q / αρ shows the operating cost.  

We denote tE   as the current energy/inventory in the storage or reservoir at the beginning t  .The 

sequential levels of the storage by a ( )1 2 TÊ= E ,E , ,E , where  iE [E,E], i 1,2, ,T   . We define the 

feasible action/decision set based on the current energy level tE E  as 

g p g g g g p p p p

t t t t t t t t t t tAction(E ) : {(q ,q ) :0 q Q U , q E E,  0 q Q U , q E E }=      −     −        (3) 

Here, the equation (3) expresses the maximum amount of power/energy that can be generated and 

pumped. The first two constraints show the upper boundary generating due to the upper limit and available 

energy in the storage. The third and fourth constraints define pumping's upper boundary because of the 

upper limit and the storage space capacity, respectively. Both binary variables 
g

tU  and 
p

tU  mean the 

unit commitment of generating and pumping in [t,t+1) . Without loss of generality, we have
p g

t tU +U 1  

where,  g

tU 0,1 and  p

tU 0,1 , which means the PSH cannot pumping and generating at the same period. 

If the PSH unit at the mode of offline, there is 
p g

t tU +U =0 , that means the merchant does nothing (i.e., idle 

or offline). A ternary pumped storage system can simultaneously operate both the pump and generate 

(ANL/DIS-13/07). However, this is a different problem and beyond the scope of this study. 

The merchant has three options: generating-and-selling, buying-and-pumping decisions, or do nothing, 

but at most, one of these decisions/actions is allowed. At the beginning of period t, the merchant knows the 

storage level tE  and the price tP , then she decides that the quantity of power 
g

tq βρ to sell to the market 

or 
p

tq / αρ to buy from the market will get the rewards 
p g

t t tR(q ,q ,P ) . At the end of the period t, the storage 

self-loss happens, so the storage level at the start of the t+1 equals 
p g

t t t tη (E q q )+ − . Thus, we can get the 

following equation, which represents the storage energy balance or state transition from period t to t+1. 

p g

t 1 t t t tE η (E q q )+ = + −                                (4) 

The price-taker and the price-maker differ in whether an electricity merchant can impact the market.  

Hence, we analyze the price maker scenario and find the optimal decision rules in the next section.  

 

4 Optimization and Analysis of the Price-Taker Storage 

We first establish the objective profit functions in Section 4.1, Section 4.2 identifies the optimal solutions 
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and insights from maximizing profit. Section 4.3 analyzes the effect of market impact for maximum 

expected profit.  

  

4.1 Payoff Rewards and Objective Function 

To maximize the profit, we assume for the merchant that all prices are known in advance so that the problem 

of controlling the storage is deterministic. The merchant makes operation and trading decisions periodically 

over a finite horizon in each period t {1,2, ,T}  . Following the previous study (Zhou et al., (2016; 

2019)), in this paper, we also model the merchant’s storage strategy as a finite horizon Markov dynamic 

programming (DP). Each stage of the Markov DP corresponds to one period. The state variables in each 

stage t are tE  and tP , the state at time t is denoted by t t tS(t) S (E ,P )= . The merchant’s goal is to find the 

optimal decision rule π  that maximizes the value function at stage 1 (i.e., initial stage) during the finite 

horizon t {1,2, ,T} .  

As a price-maker (PM) merchant, the objective function, is shown as follows: 

pT
g g g p pt

t t t t t t t t t
π

t 1

q
max E (P λP q βρ) q βρ c(q βρ) (P λP ) q / αρ c(q / αρ) | S(1)

αρ=

  
−   −  − +  −  

   
       (5) 

Subject to the capacity constraints
g g g g p p p p

t t t t t t t t0 q Q U ; q E E;0 q Q U ; q E E    −     − , 

the unit commitment constraints 
p g

t tU +U 1 , 

and the storage energy balance constraints 
p g

t 1 t t t tE η (E q q )+ = + − , 

where, t {1,2, ,T} . 

In this paper, the function (5) ignores the discount factor, E is the expectation concerning 1 1E ,P . 

Both 1E  and 1P  are the given initial level of the storage and the price in advance.   

Let tV (S(t))  denotes the value function in period t and state t t t
ˆS(t) S (E ,P ) E P=    .This function 

satisfies the Bellman equation. Being a price-maker (PM) merchant,  

( )
t

p g

t t t t 1
Action(E )

ˆV(S(t)) max [R(q ,q ,P ) E V (S(t 1) | S(t) ]+= + +                   (6) 

Following the previous study (Secomandi, 2010; Zhou et al., (2016;2019)), we assume that any 

electricity left in the storage is worthless in the terminal period T 1+  . In this way, we will get 
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T 1 T 1 T 1
ˆV (S(T 1)) V(E ,P ) 0+ + ++ = = , which indicates the value of end energy (resp. water) in storage (resp. 

upper reservoir of PSH) equals zero. This assumption is interpreted as the merchant’s only choice between 

generating-and-selling or doing nothing (offline or idle) in the last stage. T 1E +  represents the energy level 

at the beginning of period T+1; it also equals the energy level at the end of period T. 

The optimization problem of the merchant can be described to maximize V(S(1)) . Equation (5) is a 

typical binary integer Markov DP function that is too complex to obtain the closed-form optimal analytical 

solutions. In this paper, we first replace the binary variables with an equivalent continuous decision variable 

and transfer the equation (5) to a traditional Markov DP to obtain the analytical optimal policy rule. 

Following Porteus (2002) and Zhou et al. (2016; 2019), we let 
p g

t 1 t t t t t t tE η (E q q )=η (E α )+ = + − +  (i.e., 

p g

t t tα =q q− ) as the decision variable. We are using the action (decision) tα  for each period t to replace the 

previous decision 
g

tq  and 
p

tq representing the energy storage level/SOC change between periods t to t+1 

before accounting for the energy loss. Where tα 0 represents the storage decrease due to the action of 

generating-and-selling, so the quantity of power sold to the market is tα β ρ−    ; tα 0   indicates the 

storage increase due to the action of buying-and-pumping, so the quantity of power buy from the market is 

tα / αρ ; tα =0  shows the storage level does not change, or the merchant does nothing.  

To obtain the optimal scheduling solutions, we also split the optimization in (6) into two sub-

optimization problems corresponding to two different actions: buying-and-pumping from the market and 

the other generating-and-selling to the market in (1). Then, we find the optimal solution to each of these 

two sub-optimizations.  

 

P t

t t t t t 1 t

t

g

t t t t t t 1 t

αλ
V (S(t))= P (1 α ) α c E[V (S(t 1) | S(t)]  (α 0)

αρ αρV (S(t))=

V (S(t)) P (1 λβρα ) α βρ+c α βρ  +E[V (S(t 1) | S(t)]  (α 0)

+

+

  
− +  −  + +  
 


= − +    + 

          (7) 

Obviously, if tα =0  , there is P g

t tV (S(t)) V (S(t))=  . By using t t 1 t tα = E η E+ −  , and let t 1E +  as the 

decision variable, then, the tV (S(t)) in Equation (7) can be rewritten as follows:  

P 2t t 1 t t t 1

t t 1 t t t2 2

t t

g 2 2 2t 1 t 1

t t t t t t t

t t

(P c) E (P c) λP E
V (S(t))= E[V (S(t 1) | S(t)] ( ) E ( E ) (α 0)

αρ η αρ α ρ η

E E
V (S(t)) E[V(S(t 1) | S(t)] (P c) ( )βρ (P c)E βρ λPβ ρ ( E ) (α 0)

η η

+ +

+

+ +

  + +
+ − + − −   

  


 
= + − −  + −  − −  
 

  (8) 
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The optimization problem can be segmented into both 
t +1

p

t
E

max V (S(t))   and 
t +1

g

t
E

max V (S(t))  subject to

g g p p

t t t t t t tmax{ Q ,E E } q α α α =q min{Q ,E E }− − = − =   = −  in ()). Maximizing ()) can be approached by 

obtaining the optimal results to the equation (9) by removing the given state S(t)  (i.e., the given value tE  

and tP  ). Then, tV (S(t))   should have the following results based on the Bellman equation 

(Puterman,1994).  

t 1

t 1

P* * 2t t 1 t t 1

t t 1 t2 2E E E
t t

P* * 2t t 1 t t 1 t t 1

t t 1 t t2 2 2 2E E E
t t t

g*

t

(P c) E λP E
V (S(t))= max E[V (S(t 1) | S(t)] ( ) ( E )

αρ η α ρ η

(P c) E λP E λP E
or V (S(t))= max E[V (S(t 1) | S(t)] ( ) ( ) 2 E

αρ η α ρ η α ρ η

V (S(t)) m

+

+

+ +

+
 

+ + +

+
 

 +
+ − − − 

 

 +
+ − − + 

 

=
t 1

t 1

* 2 2 2t 1 t 1

t 1 t t t
E E E

t t

g* * 2 2 2 2 2t 1 t 1 t 1

t t 1 t t t t
E E E

t t t

1 t T
E E

ax E[V (S(t 1) | S(t)] (P c) ( )βρ λPβ ρ ( E )
η η

E E E
or V (S(t)) max E[V (S(t 1) | S(t)] (P c) ( )βρ λPβ ρ ( ) 2λPβ ρ E

η η η

+

+

+ +

+
 

+ + +

+
 








  
 

+ − −  − − 
 

  
= + − −  − +  

  

(9) 

 We will analyze the optimal results based on equation (9) in the next section. 

 

4.2 Optimization and Optimal Policy  

To obtain the closed-form optimal policy/decision rule in equation (9), following the previous study (Kim 

and Powell, 2011, Porteus, 2002, Zhou et al., 2016), we know that for any t {1,2, ,T} , in every stage 

t , the value function tV (S(t))  and t 1E[V (S(t 1) | S(t)]+ +  are concave in tE [E,E]  for each given state 

t t tS(t) S (E ,P )=  and tP    holds. Thus, we will get the following relationship:  

*

t 1 t
2

* *
t t+1t 1 t t 1 t

2 2

t 1 t t+1 t t+1

E[V (S(t 1) | S(t)] E

E EE[V (S(t 1) | S(t)] E E[V (S(t 1) | S(t)] E
= 0

E E E E E

+

+ +

+

  + 
        +   +     =   

       

  (10) 

Therefore, we will get that the second-order derivatives of two sub-optimization problems in equation 

(9) are negative (i.e., 
g*

t

2

t 1

V (S(t))
0

E +





 , and

p*

t

2

t 1

V (S(t))
0

E +





 ), so, we can find the unique optimal solutions 

through the first-order condition. Thus, the optimal results of SOC are shown as:   

Lemma 1: For the price-maker (PM) electricity merchant, let g*

t 1E +
and p*

t 1E +
are the optimal results 

in (9) for the price-maker scenario, respectively, as shown: 
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t 1

p*
t 1 t 1

t

p* * 2t t 1 t t 1 t t 1

t 1 t 1 t2 2 2 2E E E
t t t

*

t+1 t t t

t 1 t2 2 2 2 2

t 1 t t t E E

g*

t 1
E E

P c E λP E λP E
E arg max E[V (S(t 1) | S(t)] ( ) ( ) 2 E

αρ η α ρ η α ρ η

E[V (S(t 1) | S(t)] P c λP λP
 or 2 E 2 E 0

E αρη α ρ η α ρ η

E arg max

+

+ +

+ + +

+ +
 

+

+ =

+


 +
= + − − + 

 

  + +
− − + = 

 

=
1

g*
t 1 t 1

* 2 2 2 2 2t 1 t 1 t 1

t 1 t t t t
E

t t t

*

2 2 2 2t+1 t 1 t

t t t

t 1 t t t t E E

E E E
E[V (S(t 1) | S(t)] (P c) ( )βρ λP ( ) β ρ 2λP E β ρ  

η η η

E[V (S(t 1) | S(t)] E Eβρ 1
or (P c) ( ) 2λP ( ) β ρ 2λP β ρ =0

E η η η η

+

+ +

+ + +

+


+

+ =










 
+ − −  −  +  

 
   +
 − −  −  +  

  

 (11) 

In equation (11), we can safely draw that there exists two optimal reference points/functions p*

t 1E +
 

and g*

t 1E +
  depend on the current energy storage tE   , the given price tP  , and the intensity of market 

impact λ . In equation (11), when market impacts are not considered (i.e., λ=0 ), which becomes a special 

case for the scenario of price-taker, we obtain the following relations:  

p* p*

t 1(λ 0) t 1(PT)E =E+ = +
 and  g* g*

t 1(λ 0) t 1(PT)E =E+ = +
                        (12) 

Assume we ignore the market impact of the merchant’s trading decision on price. In that case, the price 

maker scenario becomes a particular case of the price-taker, then we will get the same optimal decisions. It 

means that the profit-maximizing electricity merchant, the optimal trading policy at each decision time 

depends on the forecasted price, the available energy in the storage, and the market impact. Based on the 

above discussion, the corresponding optimal solutions are given in the following proposition (All proofs 

are given in Appendix A)  

Proposition 1: For every stage t {1,2, ,T} , and positive forecasted electricity price 
tP̂ P (resp. 

negative forecasted electricity price), when (p,g)

t0 λ λ  1 , there exist a unique optimal storage level 

relationship p* g*

t 1 t 1E E E E+ +    (resp. p* g*

t 1 t 1E E E E+ +   ), which depend on the state ofS(t) (i.e., current  

storage tE  , the price tP ), where (p,g) 2 2t
t t t t2 2

t

P c 1 E
λ (P c)βρ 2P ( β ρ ) E

αρ α ρ η

  + 
= − − − −  
   

.  

     In this paper, we only target the positive electricity prices. Thus, an optimal decision in each state 

 

1Large-scale storage/PSH capacities are around 1GW to 2GW. Considering a large competitive market (such as MISO which has 

roughly 190 GW installed capacity) and the limited presence of locational market power due to strong transmission and market 

monitoring, we focus on analyzing a relatively small market impact. 
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t t t
ˆS(t) S (E ,P ) E P=   , can be specified as follows:  

Case 1: If 
2αβρ 1  (with efficiency loss) or c 0 ( with operating cost), then there is p* g*

t 1 t 1E E+ + , the 

feasible storage level or SOC can be divide into three regions: buying-and-pumping, generating-and-selling, 

and do nothing (or idle/offline).  

p* P p* p*

t 1 t t 1 t t 1

* p* g*

t t t t t 1 t 1

g*

t 1 t

min{E E ,Q }(buy and pump energy up to E )            E [E,E )

ˆα (E ,P )= 0         (keep energy unchanged)                                             E [E ,E ]

max{E E , Q

+ + +

+ +

+

− 



− − g g* g*

t 1 t t 1}(generate and sell energy down to E ) E (E ,E]+ +








      (13) 

Case 2: If 
2αβρ 1=  (i.e., without efficiency loss) and c=0 (without considering operating cost), then 

there is p* g* *

t 1 t 1 t 1E =E =E+ + +
 and the feasible storage level or SOC can be divide into only two regions: buying-

and-pumping and generating-and-selling.  

* P * *

t 1 t t 1 t t 1*

t t t * g * *

t 1 t t 1 t t 1

min{E E ,Q }(buy and pump energy up to E )             E [E,E ]
α (E ,P )=

max{E E , Q }(generate and sell energy down to E )  E [E ,E]

+ + +

+ + +

 − 


− − 

      (14)  

The first part of proposition 1 indicates that the price maker merchant also has three decision choices: 

generating, pumping, and idle (or offline). By comparing the current storage SOC with the optimal reference 

points, the merchant can schedule the corresponding optimal actions. If tE  less than p*

t 1E +
 , then the 

electricity merchant (i.e., PSH owner) should buy the power from market, then pump water and bring the 

SOC level up to p*

t 1E +
as close as possible, and if tE  is larger than g*

t 1E +
, the electricity merchant should 

release the water from the upper reservoir, generate and sell power to market then result in the SOC level 

down to g*

t 1E +
as close as possible, however, if the stored energy is within the boundary set forth by the two 

reference points (i.e., p* g*

t 1 t t 1E E E+ +  ), then keep the SOC unchanged or the electricity merchant should 

do nothing, respectively.  

The second part of proposition 1 indicates that without considering both operating cost and efficiency 

loss, there exists one optimal SOC threshold function *

t 1E +
 depends on the current available energy in 

storage tE , the prices tP , and the market impact λ . The merchant should generate-and-sell the power to 

market and down the SOC level to *

t 1E +
 or buy-and-pump the energy to the storage and result in the SOC 

up to *

t 1E +
, respectively. Based on the two parts of proposition 1, we will get the following insight.  
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Managerial Insight 1. For a price maker electricity merchant, the optimal trading policy at each 

decision time depends on the given power price, the available energy in the storage, and the intensity of 

market impact. From the respective price-maker to maximize the profit, the SOC range is segmented into 

three regions by two optimal SOC reference points, which corresponds to one of three distinct actions.  

These results for the electricity merchants bear a critical implication. Because a profit-maximizing 

electricity merchant only needs to compare the real-time storage SOC with the reference points only, she 

can get the corresponding optimal actions. This insight helps explain the observation and intuition that the 

merchant should pump (resp. generate) at full capacity when the prices are low (resp. high) if the SOC 

constraints do not bind, respectively. 

 

4.3 Market Impact Analysis  

Compared with the traditional study (i.e., without considering the market impact), although we still get 

similar insights that the feasible SOC can be divided into three regions or two regions, the merchant market 

impact affects the objective function. When other parameters remain the same except the market impact, 

based on the above discussion and assumption, the corresponding optimal solution is given in the following 

proposition (See Appendix A (Proof of proposition 2)). 

Proposition 2: For every stage t {1,2, ,T}  , and the forecasted positive price tP  , when both 

price-taker merchant and price-maker merchant have the same pumping and generating upper limits, the 

optimal value function and maximum profit have the following relations:  

   

* *

t 1(λ 0) t 1(λ 0)

T T

t t (λ 0) t t (λ 0)
π π

t 1 t 1

E[V (S(t 1) | S(t)] E[V (S(t 1) | S(t)]

ˆ ˆmax E R(q ,P ) | S(1) max E R(q ,P ) | S(1)

+ = + 

= 

= =

 +  +



       


 
                 (15) 

Proposition 2 shows that if the electricity merchants' trading decisions are of sufficient magnitude to 

have a market impact, whose trading decisions will affect the power prices --- when merchants choose to 

buy electricity, the market load will increase, leading to rising market prices; on the contrary, selling power 

by a price-marker merchant will increase the supply, resulting in a decrease in market prices--- which 

influence decision in return. Therefore, with the increases in market impact, the electricity merchant will 
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obtain less profit when price-taker merchants and price-maker merchants have the same generating and 

pumping limits. Based on the results in proposition 2, we will gain the following insight.  

Managerial Insight 2. If the electricity merchant ignores the market impact power market, she will 

exaggerate her expectation profit theoretically when the price-taker merchants and price-maker merchants 

have the same generating and pumping limits offered to ISOs.  

These findings are consistent with the reported results by Felix et al., (2012) and Cruise (2019), which 

means the merchant will decrease the expected profit with the increasing market impact. We propose our 

managerial insights and optimal scheduling to employ dynamic programming in this section based on the 

forecasted price. Next, we will verify the proposed analytical results through a case study. 

  

5 Numerical Simulation  

In this section, we first validate the proposed methods and results via two cases to express the analytic 

findings' characteristics and compared them with the mixed-integer linear programming based on synthesis 

data in section 5.1. Further, Section 5.2 uses real data from MISO (Midcontinent Independent System 

Operator, USA, 2020) electricity prices to indicate optimal insights. 

 

5.1 Case Study and Comparison  

For simplicity, we use two small cases to show the process detail of the proposed methods. The following 

cases provide the conditions under which we can get the corresponding optimal analytical results.  

Case 1: In this case, we assume there are three time periods ( T 3= ). At each period, the power price 

takes one of the values in set    M L H

tP p ,p ,p = 5,2,10=  . For simplify, we assume the storage energy 

capacity cannot refill it fully in one time period, but fewer than two time periods, it holds that 
pE Q E+   

and 
pE 2Q E+  . We also assume the storage can sell it empty in one period (i.e., 

gE E Q−  ). We 

assume the storage capacity is 10 (i.e., E=0,E=10 ), the generating/discharging max capacity is 12 and 

the pumping/charging max capacity is 7. For simplicity, let the operating cost be zero, and the 

pumping/charging, generating/discharging, self-discharging, and transmission efficiencies are one. To 
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verify the effect of market impact, in this case, we assume the merchant's market impact parameter λ=0.05 . 

On this basis; we use backward dynamic programming to get the following optimal policy and results:  

In Stage 3: The value function is shown as follows:  

H H 2

3 3 3 3 3 3 3 3V = [p λp (E E )βρ](E E )βρ= [10 0.5(E E )](E E )=10E 0.5E ,E [0,10]− + − − − + − − −   

In Stage 2: By using E.q. (11) for price maker merchant, we will get the following results: 

( )
3

g* p* * * L L 2

3 3 3 3 3 3 2 2
E [E,E]

E =E =E arg max{V p E λP [E E ] } 40 E 6


= − − − = +           (16) 

Following proposition 1, we will get the following optimal action at stage 2.  

p *2 2 2
2 3 2

*

2

g *2 2 2
2 3 2

40 E 40 5E 40 E
min{ E ,Q }=   (buying and pumping  up to  E )  if  E [0, )

6 6 6
α

40 E 40 5E 40 E
max{ E , Q }=  (generating and selling down to E ) if  E [ 10]

6 6 6

+ − +
− 

= 
+ − + − − 


,

(17) 

Thus, the optimal value functions in stage 2 are shown as follows:  

( )* * 2

2 2 3 2 2 2V max(R V ) 320 40E E 12  if  E [0,10]= + = + −   

In Stage 1: By using E. q. (11) for price maker merchant, we will get the following results: 

           ( )
2

p* g* * * M M 2

2 2 2 2 2 2 1 1
E [E,E]

E =E =E arg max{V p E λP [E E ] } max{0, 3E 10 4}


= − − − = −               (1)) 

Following proposition 1, we will get the following optimal action at stage 1.  

1 1
*

1 1 1 1
1 1

E  (generating and seling up to 0)                                                     if  E [0,10 3)

α 3E 10 10 E 3E 10
E =  (generating and seling down to )  if  E [10 3,10]

4 4 4

− 


=  − − − −
− 



    (19) 

Thus, the optimal value functions at stage 1 are shown as follows:  

2

1 1 1

* * 22
1 1 2 1 1 1 1

1

(5E 0.25E ) 80 3                                                               if  E [0,10 3)

V max(R V ) 700 60E E 3E 10 3E 10
320 40 12   if  E [10 3 10]

4 464

 − + 


= + =   + − − − 
+ +  −       

,
 

We will get the following optimal results: 

1) If 1E 1=  (The initial SOC in the storage) 

Stage 1: If 1E 1= ,(action 1: generate and sell,
*

1α 1= − ), then 2E 0= ;   

Stage 2: If 2E 0= ,(action 2: buy and pump,
*

2α 40 6= ), then 3 2E 40 E 6 40 6= + = ;   
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Stage 3: If 3E 40 6= ,(action 3: generate and sell,
*

3α 40 6= − ), then 4E 0=E= . 

The optimal value at stage 1 is shown as  

* 2

1 1 1V (5E 0.25E ) 80 3 31.4167= − + = . 

2) If 1E 5=  (The initial SOC in the storage) 

Stage 1: If 1E 5= ,(action 1: generate and sell,
*

1α 3.75= − ), then 2 1E 3E 10 4 1.25−= = ;   

Stage 2: If 2E 1.25= ,(action 2: buy and pump, 
*

2α 33.75 6= ), then 
3 2E 40 E 6 41.25 6= + = ;   

Stage 3: If 3E 41.25 6= ,(action 3: generate and sell,
*

3α 41.25 6= − ), then 
4E 0=E= . 

The optimal value at stage 1 is shown as  

( ) ( ) ( )( )( )2* 2

1 1 1 1 1V 700 60E E 64 320 40 3E 10 4 3E 10 4 12 45.9375= + − + +  − − − = . 

Cases 2: In this case, we will show the difference in the optimal policy and corresponding results 

between both price-taker and price-maker. Following Case 1, let the operating cost be one(i.e., c 1= ), the 

pumping and generating efficiencies be 0.9 (i.e., α=β=0.9 ), self-discharging and transmission efficiencies 

be one (i.e., ρ=η=1), while other parameters (i.e., pumping and generating upper limits) remain the same. 

We assume λ=0  , λ=0.01  , and λ=0.02  corresponding to different market impact in trading (See 

Appendix B). Then, the optimal results are shown in Table 1.  

Table 1: Optimal Results with Market Impact 

 1λ=0,E 1=  
1λ=0,E 5=  

1λ=0.01,E 1=  
1λ=0.01,E 5=  

1λ=0.02,E 1=  
1λ=0.02,E 5=  

g* P*

3 3(E ,E )  (10,10)  (10,10)  (10,10)  

 
g* P*

2 2(E ,E )  

 

(3,3)  

1 10.081E 10E 81 459 1500
( ,
0.22

)
0.13048 0. 4

72

285

+ +
 10.162E

( ,0)
0.26

0 2

2

.7 +
 

    
*

3α  
-10 -10 -8.5 -10 -8 -10 

*

2α  
7 7 7 5.16 7 5 

*

1α  
2 -2 0.5 -0.16 0 0  

*

1V  
44.34 64.)7 34.1 55.7 28.68 46.9 

 

To verify the proposed method's effectiveness, we also get the optimal results for the above two cases 

using the traditional mixed-integer linear programming (MILP) model (Chazarra et al., 2018; Zhan et al., 
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2020) and compare the optimal results that obtained through Markov DP (proposed method this paper) and 

MILP (traditional method). Following the discussion and assumption in Section 3, the traditional MILP 

model for a price-maker (PM) merchant is shown as: 

   

pT
g g g p pt

t t t t t t t t t

t 1

g g g

t t

g

t t

p p p

t t

p

t t

p g

t t

p g

t t

p g

t 1 t t t t

q
(P λP q βρ) q βρ c(q βρ) (P λP ) q / αρ c(q / αρ)

αρ

0 q Q U

q E E

0 q Q U

s.t. q E E  

U 0,1 , U 0,1

U +U 1

E η (E q q )

=

+

 
−   −  − +  − 

 

   


 −


  


 −


 
 

 = + −



   (20) 

The parameters and constraints of PSH, market impact, and forecasted prices remain the same as cases 

1-2 in Section 5.1. The above optimal results (unit commitment and economy dispatch (UCED) and optimal 

profit) in cases 1-2 are verified in AIMMS, a prescriptive analytics software. We achieve the same optimal 

results using both MILP methods and dynamic programming for the above two cases.  

When the operating cost and efficiency loss are fixed values, the optimal profit and policy are most 

strongly related to the market impact λ . We confirm these findings by performing additional calculations, 

as briefly described next. We adjust the value λ  from 0 to 0.2 increments of 0.01 and then re-run the 

cases in the software of AIMMS; the results do not differ materially from those obtained in case 1. It is, 

therefore, the market impact that will affect the optimal results. In the meanwhile, both cases also verify 

the relations of p* g*

t 1 t 1E E+ +  for the scenario of price maker.   

  

5.2 MISO Case Study  

This section uses hourly time units as the power prices series 
1 2 TP {P ,P , ,P }=  ($/MW) with 336 stages 

( T 336=  ) corresponding to two-week periods in MISO for the year 2020 as supplied. The first stage 

corresponding to the beginning of 06/2)/2020 (the power prices are available at 

https://www.misoenergy.org/). Following the equation (2), we know that the updated prices at which the 

https://www.misoenergy.org/
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electricity merchant buys tα   units power from the market to increase her level (i.e., tα 0  ) can be 

computed by 
t t tP λP ρα α+ , and at which the electricity merchant sells tα  units power to the market to 

get revenue (i.e., tα 0 ) can be expressed by 
t t tP λP ρα β+ . 

We assume the minimum and maximum storage capacity (upper reservoir) E  and E  are 2 and 20, 

respectively. Here, E 0  means the merchant cannot empty the storage, this is realistic in the power 

market for a PSH or battery owner. The generating and pumping rate constraint pQ 2=  and gQ 3= . The 

unit of measurement of storage can be interpreted as an appropriate MWH. The units of measurement of 

pumping and generating rate can be expressed as an appropriate MW)—both the pumping and the 

generating efficiency of α β=0.9= . The time g(E E) Q 6− =  hours units for the PSH to empty the upper 

reservoir, while p(E E) Q 9− =  hours units for the PSH to refill the upper reservoir correspond entirely 

approximately to the Taum Sauk pumped storage plant in Missouri USA. In this case, the maintenance and 

operating cost c 1= ($/MW). We assume ρ 1=  and η 1= .  

When the power prices are fixed, the electricity merchant's revenue is determined mostly by the 

operating cost and efficiency in the trading. Here, we fix both the pumping and generating efficiencies, the 

operating cost, and focus on the market impact. We also assume the relationship between price and demand 

throughout the example can be obtained at any point in the time as the demand was varied. Usually, two 

weeks is an optimization cycle for the Taum Sauk in the power market.  

The optimal policy obtained from the value functions (5) is shown in Fig 1 and Fig 2 with different 

initial energy in the storage, respectively. 

Fig 1. Optimal Storage/SOC Change Curve with Market Impact (E1=2MWH) 

 

 

Fig 2. Optimal Storage/SOC Change Curve with Market Impact (E1=10MWH) 

https://en.wikipedia.org/wiki/Missouri
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Figures 1-2 lead us to the following observations and conclusions. When the market impact is small, 

the merchant will adopt a similar strategy as the traditional policy (i.e., price-taker). We can also find the 

daily cycle of SOC according to the pattern of price every day. The merchant should buy power as much 

as possible at lower prices at midnight and sell as much as possible during the day at higher prices. However, 

when the market impact is large enough, we see that the navy-blue curve ( λ=2 ) and green curve ( λ=3 ) 

change very smoothly. To maximize profit, the electricity merchant needs to reduce the energy transition 

quantity (i.e., amount of energy that buys from the market or sells to the market) each period to lower the 

negative effect of market impact in trading. With the increase of market impact, the cost of buying will 

increase; however, the revenue will decrease. To reduce the negative effect of the market impact in trading, 

the electricity merchant should choose by lowering the power transition quantity at each period. Therefore, 

a profit-maximizing electricity merchant must perfectly balance the trade-off between the intensity of 

market impact and the power transition quantity. Next, we will show the relations between the expectation 

profit the market impact intuitively in Fig.3.  

Fig 3. The Relations between Optimal Expectation Profit and Market Impact 

 

Fig 3 shows that comparing with the traditional study (i.e., price-taker merchant), if both price taker 

merchant and price maker merchant holds the same pumping and generating upper limits if the market 
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impact is small or the electricity merchant's decisions have a weak market impact on prices, the merchant 

will get higher profit during trading. In this case, with the decrease in market impact, the cost will go down, 

and the revenue will rise, which benefits the merchant's profit. As the market impact increases, the cost of 

buying will increase; however, the revenue will decrease, which results in a lower profit. 

The profit-maximizing merchant should reduce her market impact by balancing the intensity of market 

impact and the power transition quantity. In practice, the ratio of energy storage max capacity and the 

demand in the power market may be small, which means the market impact is low in trading. So, the 

merchant will adopt a similar optimal policy as the price taker; however, she may obtain less profit than 

theoretically maximum profit.  

We also re-run the cases in the software of AIMMS by using one day period in MISO for 06/2)/2020 

as supplied. Once again, our previous conclusions are supported mainly. Therefore, it is reasonable to 

conclude that our results (i) are robust and representative of the broader set of parameters that we have 

tested, and (ii) confirm our analytical results and insights. We can draw the numerical simulations are in 

line with the conclusions made in Section 4 from our examination of Figures 1–3. 

In summary, the scenario of price maker electricity merchants requires different trading strategies than 

a price taker. From the price-maker situation, results are novel and insightful—giving the electricity 

merchant an additional set of considerations when her trading decisions impact the market prices. 

 

6 Conclusions and Future Research 

Although the electricity trading policy has been extensively studied in the wholesale market and inventory 

management literature, optimal policy research from the respective price-maker whose trading decisions 

impact market prices has only started to gain attention recently. Our study is the first to model the problem 

as a Markov DP and derive the optimal policy structure for the slow storage to analyze electricity merchant 

management of managing a storage facility used for arbitrage and whose activities are sufficiently 

significant to have a market impact. We show that this optimal policy structure generalizes a classic result 

of Secomandi (2010) and differs significantly from typical threshold policies known to be optimal in the 



24 

 

 

 

literature without considering the market impact. A focused yet thorough presentation required that we 

study only the merchant's objectives of maximizing profit. 

For a price maker electricity merchant, in the presence of efficiency loss or operating cost, the optimal 

trading policy corresponding to the reference points/ functions at each decision time not only depend on the 

current energy availability in the storage and the given prices but also rely on its market price impact. The 

feasible SOC can be segmented into three regions by two optimal reference points/functions: buying-and-

pumping, generating-and-selling, and do nothing (or idle/offline). However, suppose efficiency loss and 

operating costs are not considered. In that case, the feasible SOC can only be divided into two regions by 

one unique optimal reference point/function: buying-and-pumping and generating-and-selling. We obtain 

similar results and insights for electricity merchants after additionally incorporating the value of 

water/energy at the end of the optimization horizon into our notion of reward functions and value functions. 

We identify the merchant's market impact as a critical driver of optimal policy design. If the electricity 

merchant's market impact is small on the prices, we will get similar results as the scenario price-taker. 

However, when both price-takers and price-makers are under the same generating and pumping limits 

offered to ISO, the most surprising finding is that market impact may lead to profit-reducing by increasing 

the cost of buying and decreasing sales revenue. If, besides, the market impact of electricity is high, then 

revenue can only partially offset the increased cost. In such a case, we find that the electricity merchant 

should lower the adverse effects of the market impact as much as possible by reducing the power transition 

quantity at each period to maximize the profit.  

For analytical tractability, we assume in this paper that the market impact of electricity merchants 

follows a simple linear relation. Although we expect our paper's results to hold for other relationships, 

confirming this expectation is a worthy goal. This paper assumes that the price taker and price maker 

merchants have the same storage capacity and generating and pumping limits offered to ISO. How the 

results would change when the market impact is related to the storage capacity is another topic for future 

investigation. It seems likely that our paper's main structural results will also hold for other types of 

relation—when merchants choose to buy electricity, the market load will increase, leading to rising market 

prices; on the contrary, selling power by a price-marker merchant will increase the supply. Additionally, to 
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keep the paper focused, we studied only the electricity merchant's objectives to maximize profit. It would 

also be necessary to understand the market impact of electricity merchants' decisions on social welfare and 

customer utility from ISO. Finally, this paper addressed only the case of the value of end water/energy in 

storage equals zero; it would be instructive to see how the results would change when the value of 

water/energy at the end of the optimization period is involved. 
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