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 Abstract— Nodal price separations in Day-Ahead (DA) market 
caused by transmission congestion create congestion charges/surplus 
that are reallocated to the market participants through the financial 
transmission right (FTR) auction. From a market participant’s 
viewpoint, these two markets are interrelated because the revenue of 
market participant in FTR auction is determined based on the day-
ahead locational marginal prices. Furthermore, virtual transactions 
which are designed to improve price convergence between the day-
ahead and real-time markets can directly impact day-ahead prices. 
This impact through virtual transactions may be utilized by a market 
participant to increase its FTR value and improve its overall strategy 
in participating in both FTR auction and day-ahead market. To this 
end, this paper is the first attempt to reveal this tactic in literature 
and proposes an offer strategy framework for a price-maker 
generating company participating in both FTR auction and day-
ahead market with the consideration of virtual bidding. First, the 
possibility of FTR value manipulation is conceptually demonstrated 
by placing virtual bids in the day-ahead market. Second, a two-stage 
bi-level offering strategy model is formulated for strategic GenCos, 
which is further converted to a single-level optimization problem by 
using Karush-Kuhn-Tucker conditions and strong duality theory. 
Numerical tests on a 5-bus system and IEEE reliability test system 
(RTS) demonstrate the effectiveness and applicability of the proposed 
approach. 

Index Terms—Bidding, day-Ahead market, FTR auction, 
manipulation, offering strategy, virtual bidding. 
 

NOMENCLATURE 
A. Abbreviations 

DA Day-Ahead 
RT Real-Time 
MP Market Participants 
FTR Financial Transmission Right 
SDT Strong Duality Theory 
LMP Locational Marginal Price 
GenCo Generating Company 
KKT Karush-Kuhn-Tucker 
DEC Decrement Bid 
INC Increment Bid 
UL-FTR Upper Level of the 1st stage model [bidding in 

FTR auction] 
LL-FTR Lower Level of the 1st stage model [bidding in 

FTR auction] 
UL-DA Upper Level of the 2nd stage model [bidding in 

DA Market] 
LL-DA Lower Level of the 2nd stage model [bidding 

in DA Market] 
 
 

B. Indices and Sets 

𝑡 Index for time periods 
𝑣 Index for virtual bids 
𝑖 Index for strategic generating units 
𝑐 Index for FTR seller 
𝑒 Index for strategic FTR buyer  
𝑗 Index for other generating units  
𝑓 Index for other FTR buyers 
𝑏 Index for generation blocks 
𝑑 Index for demands 
𝑘 Index for demand blocks 
𝑙 Index for lines 
𝑛 Index for buses 
𝑚 Index for FTR paths 
𝑠𝑖𝑛𝑘, 𝑠𝑜𝑢𝑟𝑐𝑒 Index for Sink and Source buses 
𝑁!"# , 𝑁$%&& Set of sellers and buyers in the FTR auction 
Ω'()* Set of decision variables in UL of FTR auction 

model: Ω!"#$ =	$𝐹𝑇𝑅%&'() , 𝜌%*	* 
Ω+()* Set of decision variables in LL of FTR auction 

model: Ω+"#$ =	$𝐹𝑇𝑅%*, 𝐹𝑇𝑅,, 𝐹𝑇𝑅-*. 
Ω',-		 Set of decision variables in UL of DA market 

model: Ω!./ =	 $𝑃0('&'() , 𝛼0('& , 𝑉01'()2 , 	𝛼01'()2 , 𝑉01'().,
𝛼01'()., 𝑈𝑔01, 𝑈𝑑01* 

Ω+,- Set of decision variables in LL of DA market 
model: Ω+./ =	 1𝑃0('& , 𝑃03'

4 , 𝑃0)5) , 𝑉01
./4, 𝑉01./)2 

C. Parameters  

𝐹𝑇𝑅%
.
 Upper limit of FTR for strategic FTR buyer e  

𝐹𝑇𝑅/ Upper limit of FTR for other FTR buyer f 

𝐹𝑇𝑅0 Upper limit of FTR for FTR seller c 
𝜎0 Offer price of FTR seller c 
𝜌/ Bid price of FTR buyer f 
𝐻&1 Sensitivity of line l to the FTR MW in path m   
𝜆23*) Real-Time locational marginal price at time 𝑡 

and bus 𝑛 
𝜆245.  Marginal cost of unit	𝑖	of the strategic generator 

at time 𝑡 
𝑃>245.  Upper power bound of unit 	𝑖  of the strategic 

generator at time 𝑡 
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𝑃>2657  Upper power bound of unit 	𝑗  of other 
generators at time 𝑡 

𝑃>289,  Upper power limit of demand 	𝑑 at time 𝑡 
𝜆265
:  Marginal cost of unit 	𝑗	of other generators at 

time 𝑡 
𝜆2898  Marginal utility of demand 	𝑑 of the at time 𝑡 
𝑉2;
5"8:%2 Upper quantity limit of virtual bid	𝑣	at time 𝑡 

𝐹>& Line	𝑙  Capacity  
𝑃𝑇𝐷𝐹3& Power Transfer Distribution Factor 
𝑅4<=, 𝑅4>? Ramp-up and ramp-down limits for strategic 

unit 𝑖 
D. Variables 

𝐹𝑇𝑅%.548 Bid quantity for FTR bidder e 
𝐹𝑇𝑅%$ Cleared quantity for FTR bidder e 
𝐹𝑇𝑅0	 Cleared FTR for seller c 
𝐹𝑇𝑅/ Cleared FTR for buyer f 
𝜌%$ Bid price for FTR bidder e 
𝐿𝐹& Power flow in line l in FTR auction 
𝐹& Power flow in line l in DA market 
𝑃245.548	 Bid power of the strategic generating unit 𝑖 at 

time 𝑡 
𝑃245.  Cleared power of the strategic generating unit 

𝑖 at time 𝑡 
𝛼245.  Bid price of the strategic generating unit 𝑖 at 

time 𝑡 
𝛼2;5487 Bid price of virtual generation 𝑣	at time 𝑡 
𝛼2;548, Bid price of virtual demand 𝑣	at time 𝑡 
𝑉2;5487 Bid quantity of virtual generation	𝑣		at time 𝑡 
𝑉2;548, Bid quantity of virtual demand	𝑣		at time 𝑡 
𝑉2;
,-: Cleared quantity of virtual generation 𝑣		 at 

time 𝑡 
𝑉2;,-8 Cleared quantity of virtual demand 𝑣		at time 𝑡 
𝑃2657  Cleared power generation of unit 	𝑗  of other 

generators at time 𝑡 
𝑃289,  Cleared power for load	𝑑 at time 𝑡 
𝑈𝑔24 , 𝑈𝑑24 Binary variables determine the virtual 

generation or virtual demand 
𝛩 Objective function value of the second stage 

problem 
E. Dual Variables 
𝑀𝐶𝑃1 FTR auction price for FTR in path m 
𝜏 Lagrangian coefficients of the FTR quantity 

limitations in the LL problem of the 1st stage 
optimization model 

𝜉 Lagrangian coefficients of the line capacity 
constraints in the LL problem of the 1st stage 
optimization model 

𝐿𝑀𝑃23 Locational Marginal Price at time 𝑡 and bus 𝑛 
in the DA market 

𝜇	 Lagrangian coefficients of the generation and 
demand limitation in the LL problem of the 2nd 
stage optimization model 

𝜗 Lagrangian coefficients of the line capacity 
constraints in the LL problem of the 2nd stage 
optimization model 

𝛾, 𝑢, 𝜔 Binary variables needed to linearize the 
complementary constraints 
 

I.  INTRODUCTION 
After restructuring of the power industry, market participants 

(MPs) may be exposed to high and unpredictable congestion 
charges due to locational marginal pricing (LMP) in wholesale 
electricity markets. To protect the MPs from the congestion price 
uncertainty and to provide the fair approach of allocating the 
leftover funds, independent system operators (ISOs) hold an 
independent auction called a Financial Transmission Right (FTR) 
auction in which the FTRs values are determined based on the day-
ahead (DA) LMP differences between the beginning nodes 
(𝑠𝑜𝑢𝑟𝑐𝑒 ) and the end nodes (𝑠𝑖𝑛𝑘 ) of the FTRs paths. This 
financial instrument provides an opportunity to the MP to hedge 
risk and at the same time creates a possibility to manipulate the 
wholesale market prices to maximize its profit profile. The crucial 
issue is how a strategic MP should build its offering strategy in 
both the wholesale market and the FTR auction, which is addressed 
in this paper. 

FTRs, known as point-to-point FTRs, are financial instruments 
that allow the market participants to obtain an annual or monthly 
share of surplus congestion charges collected by ISO. These 
surplus charges result from the disparity of LMPs in congested 
areas, which leads to more fund collected from demands by ISO 
than payment to generation suppliers [1]. These rights can be 
categorized as “obligation” and “option”. The major distinction 
between these FTRs arises when the LMP difference between the 
sink (withdrawal) and source (injection) buses is negative, which 
makes the FTR obligation a liability, yet FTR option would never 
be a liability [2]. A generalized FTR auction model was reported 
in [3], where market players were allowed to purchase and sell 
FTR through the auction. Moreover, implementation of obligation 
FTR auction in the PJM market was presented in [4]. Finding the 
optimal bidding strategy for market players in the FTR auction has 
been studied in the literature. The bi-level optimization models 
were utilized in [2] and [5] to maximize the MPs’ FTR payoffs in 
the FTR auction. Using the conjectured price influence function, 
[6] evaluated the strategic bidder’s market power in the FTR 
auction. A game theoretic model was used in [7] to develop the 
optimal bidding for generators, and [8] modeled the FTRs based 
on the equilibrium condition.  

In terms of bidding strategy problems, many works on 
designing the bidding decision designs of different MPs in the DA 
and Real-Time (RT) markets can be found in the literature. For 
instance, the bidding decisions of price-taker MPs, whose actions 
cannot change the market outcomes, were studied in [9]–[15], 
while the bidding strategy problem for the price-maker MPs, 
whose behaviors impact the market results, were investigated in 
[16]–[21]. These works employed different approaches to find the 
optimal bidding decisions in electricity markets, primarily DA 
markets, without considering the effect of FTR auction outcome 
on their strategies. Decision-making process of different MPs 
participating in multiple markets was investigated in [22]–[24]; 
however, very few works provided the methodologies for MPs to 
optimize their behaviors in FTR auction and DA markets [25]–



MEHDIPOURPICHA et al.: OPTIMAL OFFERING STRATEGY OF GENCO WITH JOINT PARTICIPATION IN FTR AUCTION               3 

[26]. 
Virtual transactions (also known as virtual bids or convergence 

bids) are practical instruments used to compensate for the gaps 
between the LMPs in DA and RT markets. According to the PJM 
report [27, 28], financial players can trade virtual bids as increment 
offers (INC) or decrement bids (DEC) in the DA market without 
any intention of generating or consuming the real power in the RT 
market. The merits and demerits of virtual bids participating in the 
DA market, were discussed in [29]–[31]. Virtual bids were 
employed as flexible resources in [31] in four distinct two-
settlement market clearing models to improve the DA scheduling 
of generating units. A three-stage equilibrium model was 
introduced in [32] to evaluate the manipulation in three sequential 
markets, considering the demand and congestion uncertainties. 
Moreover, numerical simulation on a two-bus system showed that 
the DA price manipulation by virtual bids, thus taking advantage 
of FTR positions, was achieved when all players engaged in the 
Cournot game in the DA market. A Mixed Density Network 
(MDN) was introduced in [33] to forecast the LMP difference 
between RT and DA markets, and it presented a data-driven 
algorithmic bidding strategy for virtual bids in the DA market. [34] 
evaluated the strategy of a photovoltaic producer using the virtual 
bids and stochastic optimization. The optimal bidding decision 
design for a virtual bidder in the DA market, considering the risk 
of profit volatility, was presented in [35]. In addition to all the 
aforementioned benefits and applications, virtual bids are able to 
increase the value of FTR in an FTR auction because they can be 
submitted as generations or loads at specific locations [36]. This 
feature of virtual bid provides a potential opportunity for the MPs 
to enhance their bidding strategy designs, which has not been 
studied in existing works. 

Therefore, this paper proposes a two-stage bi-level optimization 
model for designing a joint offering strategy for a strategic 
generation company (GenCo) which participates in both FTR 
auction and DA market and is capable of submitting virtual bids in 
the DA market. Strategic GenCo tends to maximize its payoff in 
the FTR auction which is modeled in the lower-level (LL) of the 
first stage problem. Furthermore, the revenue of the GenCo in FTR 
auction is dependent on the LMP difference between the sink and 
source buses, which are transferred from the second stage problem 
(DA market model). In addition, the strategic decision-making 
process of this MP in the DA market is modeled in the second stage 
problem, in which the upper-level (UL) subproblem models the 
GenCo’s profit maximization problem. The only relation between 
the first stage and second stage problems is the DA LMP, which 
appears in the first stage objective function, meaning that this 
problem can be written as a single stage bi-level problem. Finally, 
employing KKT optimality conditions and strong duality theory 
(SDT), this problem is transformed into its equivalent single-stage, 
single-level problem.  

In comparison with [35] and [37] which designed the MP’s bids 
for only DA market, the proposed work investigates MP’s offering 
strategy problem of joint participation in two interrelated markets, 
DA market and FTR auction. Specifically, the proposed work 
reveals strategies that can influence FTR value through 
manipulating DA market. It is a topic rarely studied in the 
literature, and yet bears high value in actual market practices. [25] 
studied the joint offering problem from the perspective of a 
physical MP, while in the proposed work, physical MP with virtual 
bidding capability is the focused subject because virtual bidding is 

a powerful tool for MPs to manipulate DA market which 
subsequently affects the FTR value. In addition, [25] studied DA 
market bidding strategy with the consideration of cleared FTR 
auction results. FTR auction is not modeled, and therefore in 
essence [25] is a DA market bidding problem, which significantly 
limits its offering flexibility and profit maximization ability. In 
contrast, the proposed work treats the MP as a “price-maker” 
player in both FTR and DA markets, to maximize the bidding 
opportunities. FTR auction is modeled to evaluate the participation 
strategy in FTR auction. Therefore, the contributions of this paper 
can be summarized as follows. 
1) Reveal the possibility of FTR value manipulation by sub- 
mitting virtual bids in the DA market, which allows the MPs to 
design their strategies with the consideration of broader decision-
making horizon. 
2) Provide a systematic framework to investigate the possibility of 
such manipulation with a novel two-stage bi-level joint offering 
strategy model for strategic GenCo participating in both FTR 
auction and DA market. In addition to deciding on the physical 
generation of the GenCo, the proposed model allows this MP to 
employ virtual bids to optimize its profit considering its flexibility 
of being either load or generation at different nodes of the network, 
which affects the FTR value and the MP’s offering strategy overall 
performance in both markets. 
3) Demonstrate the effect of FTR auction outcomes on the offering 
decision of the strategic GenCo in the DA market by studying the 
behavior of the GenCo engaging separately and jointly in both 
markets. Furthermore, several case studies are designed to 
compare with existing methods and illustrate the efficacy of the 
proposed model in developing an improved offering strategy and 
demonstrate the opportunity for a strategic MP to obtain higher 
total profit than the combined profits in FTR auction and DA 
market using individually developed strategies in the literature. 

The rest of the paper is organized as follows. Section II 
demonstrates the possibility of FTR value manipulation by 
submitting virtual bids in the DA market. The proposed joint 
offering strategy model is briefly described in Section III, and the 
mathematical formulation is fully detailed in Section IV.  
Illustrative example and case study results are discussed in Section 
V and Section VI, respectively. Lastly, Section VII concludes the 
paper. 

 

II.  MANIPULATION OF FTR VALUE BY VIRTUAL BIDDING  

A.  Virtual Bidding  
Virtual transactions that can be submitted into the market in 

form of either demand (DEC) or generation (INC), are able to 
change the market prices. A distinct feature of virtual bid is that 
the amount of power bought (sold) by the virtual bidder in the DA 
market is exactly compensated by a sale (purchase) of the same 
amount of power in the RT market, such that the net amount of 
power traded in these markets is zero. For instance, if a virtual 
bidder expects a lower DA LMP than RT LMP at the specific bus, 
he/she could submit the virtual demand (DEC) in that bus for the 
same time-period. If the submitted DEC is cleared, the virtual 
bidder pays the DA LMP on all purchased power and receives the 
RT LMP for the same amount of power sold in the RT market.  
Therefore, the virtual bidder’s profit is equal to the DA/RT LMP 
difference multiplied by the amount of cleared virtual power. 
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Simply, the value of a virtual bid is estimated based on the DA/RT 
LMP differences. To illustrate this point, the modified version of 
a five-bus test system defined in [37] is employed here (Fig. 1). 
There are 5 generators, 4 loads, 6 transmission lines in this system. 
All offer (bid) quantities and generators’ (loads’) prices, and the 
transmission line capacities are depicted in Fig. 1 beside each 
element. Assume that a virtual bidder intends to submit VB amount 
of DECs at bus B. Considering the fixed forecasted RT LMP, the 
value of the virtual bid (𝜆$# − 𝜆./) decreases because the DA LMP 
increases, when the amount of DECs increases at this bus (Fig. 2). 
The more cleared amount of DEC, the more profit the virtual 
bidder can make. However, the price spread between DA LMP and 
RT LMP declines when the amount of cleared DEC increases, thus 
the virtual bidder’s profit decreases. As is seen in Fig. 2, the virtual 
bidder can maximize the profit ($294.64) by placing 9MW DECs 
at bus B. 

 

 
Fig. 1. Five-bus test system 
 

 
Fig. 2. Virtual demand value and virtual profit of trader in 5-bus system 
 

B.  Manipulation of FTR Value by Virtual Bids 

By contrast, as it was comprehensively explained in [7], the 
FTR allows the MPs to hedge against the congestion risk; and its 
value is equal to the LMP difference between the 𝑠𝑖𝑛𝑘 and 𝑠𝑜𝑢𝑟𝑐𝑒 
buses. For example, if an MP owns F MW FTR from bus “E” 
(𝑠𝑜𝑢𝑟𝑐𝑒) to bus “B” (𝑠𝑖𝑛𝑘), its revenue would be equal to (𝜆@,- −
𝜆A,-) × 𝐹. As this instrument’s value is calculated based on the DA 
LMP, there is an opportunity for an FTR holder to manipulate the 
DA LMP, thus maximizing its payoff. Moreover, as it was shown 
in the Section II-A, an MP can change the DA LMP without the 
obligation of generating or consuming any physical power. 
Therefore, placing virtual bids at specific buses in the system can 
worsen the line congestion in the DA market and increase the DA 
LMP difference between the sink and source buses, then it 
provides more FTR profit for the MP. To illustrate this point, the 
previous example is extended by assuming that the MP holds an 
FTR from bus “E” to bus “B”. As is shown in Fig. 3, DA LMP at 
bus “B” increases when the more virtual demand (DEC) is cleared 
at this bus; therefore, the FTR value (𝜆@,- − 𝜆A,-) increases, and 
MP makes more FTR profit.   

 
Fig. 3. Virtual demand value and FTR value profiles by placing DECs at bus “B” 
of 5-bus system 

Fig. 4 shows the total profit from the FTR and virtual trades. As 
shown, the maximum value of total profit is $994.4 that happens 
when 41MW virtual demand is cleared in the DA market. 
Although the MP loses a small amount of money in the DA market 
by submitting more virtual demand, its total profit is maximized 
by making more FTR profit. In other words, the ability of the MP 
to increase the value of FTR, incentivizes him/her to place more 
DECs at the sink bus and optimize the total payoff.  

 
Fig. 4. Virtual profit, FTR profit and total profit profiles of MP by placing DECs at 
bus “B” of 5-bus system 

C.  Role of Virtual Bidding in the Joint DA-FTR Bidding 
Problem 

While virtual bidding is designed to provide a market 
mechanism to drive the convergence of DA and RT markets, it can 
be utilized by strategic MPs to manipulate DA LMP and, through 
the FTR auction settlement, the FTR value of FTRs owned by the 
strategic MPs. Therefore, virtual bids can be used as a tool by the 
strategic MPs to maximize their collective profits in participating 
both DA markets and FTR auction market by means of influencing 
the day-ahead market prices and FTR value. In the proposed 
model, the MP’s ultimate goal is to maximize the total profit by 
strategically participating in the FTR auction and DA market. 
More specifically, the strategic MP submits the virtual bids 
alongside the physical generation offers into the DA market to 
efficiently manipulate the market prices for its own interest. 

 

III.  PROPOSED JOINT OFFERING STRATEGY MODEL FRAMEWORK 

A.  Model Assumptions 

The main assumption of the proposed model is described here 
for clarity. 
1) Transmission network is modeled using DC power flow to be 

consistent with contemporary market practices. Power 
Transfer Distribution Factor (PTDF) has been used to 
calculate the line flows. 

2) Unlike [25], MP is considered a price maker player in both 
FTR auction and DA market to investigate the influence of 
MP’s strategies in both markets simultaneously. 

3) To align with real-world practices [41,43], MP is assumed to 
participate in a one-round FTR auction to acquire the FTRs. 
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The FTR auction is held one month prior to the DA markets 
which is executed for 24 hourly periods. 

B.  Model Description 
FTRs provide MPs a valuable way to protect them against price 

uncertainties due to congestions. Payments to FTR holders are 
determined by DA LMP settled in DA market. The DA LMP 
difference between 𝑠𝑜𝑢𝑟𝑐𝑒 and 𝑠𝑖𝑛𝑘 buses of a FTR is dependent 
to the MPs’ offering strategies and settlement of the DA market. 
Therefore, the MP’s offering strategy design procedures in FTR 
auction and DA market are strongly correlated and need to be 
studied together. As a result, players in the FTR and DA markets 
may choose to develop bidding strategies that maximize the 
combined payoffs in the two markets. To this end, this paper 
proposes a two-stage two-level model to achieve that. 

Fig. 5 represents the time sequence of power markets. As a part 
of forward markets, monthly FTR auction is held a month prior to 
the DA market [2], and an MP requires the forecasted DA LMP to 
design its FTR bidding strategy. This study aims to design a 
bidding strategy for a price-maker MP participating in both the 
monthly FTR auction and Day-ahead market. 

 

 
Fig. 5. Time sequence of different electricity markets. 

Fig. 6 presents the decision graph of the proposed model. As 
shown, the total profit of the strategic MP comprises the FTR profit 
and the profit from the physical generation and virtual bids in the 
DA markets. Interdependency of these two markets, from the MP’s 
viewpoint, comes from the DA LMP of the sink and source buses, 
which are determined after the DA market clearing process and are 
required to compute the revenue of MP from its FTR position. 

 
Fig. 6. Bidding Strategy of strategic MP in both FTR and DA markets 

A DA market model can be used by a strategic MP to observe 
the market’s reaction to the imposed strategies. Furthermore, an 
FTR auction model is needed to derive the market price in the FTR 
auction, which is required to calculate the FTR cost [7]. As a result, 
in this paper, a two-stage bi-level optimization model is proposed 
to capture the strategic MP’s offering strategy in FTR auction and 
DA market. As shown in Fig. 7, the first stage problem is a bi-level 
optimization model that maximizes the MP’s profit in the FTR 
auction in the UL subproblem, and it models the FTR auction 
clearing process in the LL subproblem. At this stage, the DA LMPs 
required to calculate the FTR revenue, come from the second 

stage. At the second stage, another bi-level optimization problem, 
that models the maximization problem at the UL and the DA 
clearing procedure at the LL subproblems, is formulated. The 
detailed description of the proposed model is fully explained in 
Section IV. 
 

 
Fig. 7. Proposed two-stage bi-level optimization model and the solution 
methodology 
 
 

IV.  MATHEMATICAL FORMULATION 

To facilitate the explanation of how the model is constructed, 
each of the stages is modeled separately and then the required 
exchanged information between the stages is specified and the 
final model is presented. Therefore, the first stage two-level model, 
which represents the bidding strategy model in FTR auction, is 
explained at the first step, then the second stage two-level model 
is discussed. Lastly, the final model is formed according to the 
transferred data between these stages. 

A.  First Stage: Bidding strategy model in FTR Auction 
The first stage of the proposed model tries to maximize the 

MP’s profit participating in the FTR auction. To consider the 
influence of MP’s bids on the FTR auction price, two-level 
optimization model is formed as follows:  
Upper-Level 
Min.
Ω!"#$

&'𝑀𝐶𝑃%𝐹𝑇𝑅%& − '𝐿𝑀𝑃',&)*+ − 𝐿𝑀𝑃',&,-./%	1	𝐹𝑇𝑅%&	1
'

 
(1a) 

s.t:  
0 ≤ 𝐹𝑇𝑅%01)2 ≤ 𝐹𝑇𝑅%

0
 (1b) 
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𝜌%& ≥ 0 (1c) 

Lower-Level 

𝐹𝑇𝑅%&, 𝑀𝐶𝑃% ∈ arg 	{   

Min.
Ω3"#$

& 𝜎/𝐹𝑇𝑅/
/∈5!"##

−&𝜌%&𝐹𝑇𝑅%&
%

− & 𝜌6𝐹𝑇𝑅6
6∈{5$%&8%}

 

(1d) 
s.t: 
0 ≤ 𝐹𝑇𝑅%& ≤ 𝐹𝑇𝑅%01)2 ∶ 	 𝜏%0	, 𝜏%

0,			∀𝑒 (1e) 

0 ≤ 𝐹𝑇𝑅6 ≤ 𝐹𝑇𝑅6 	 ∶ 	 𝜏6	, 𝜏6, ∀𝑓 ∈ {𝑁:-. − 𝑒} (1f) 

0 ≤ 𝐹𝑇𝑅/ ≤ 𝐹𝑇𝑅/ ∶ 	 𝜏/	, 𝜏/ , ∀𝑐 ∈ 𝑁&%;; (1g) 
−𝐹; ≤ 𝐿𝐹;%< + 𝐿𝐹; ≤ 𝐹; 	 ∶ 		 𝜉;	, 𝜉;				∀𝑙 (1h) 

𝐿𝐹; =&𝐻;=
=

𝐹𝑇𝑅=	, ∀𝑙, 𝑚 ∈ {𝑁&%;; , 𝑁:-.}		 (1i) 

𝑀𝐶𝑃= =&𝐻;=(	𝜉; − 𝜉;)
;

, ∀𝑚 ∈ {𝑁&%;; , 𝑁:-.}		 (1j) 

𝐻;= = 	𝑃𝑇𝐷𝐹;,&,-./% −	𝑃𝑇𝐷𝐹;,&)*+ (1k) 

The objective of the MP is to minimize the negative of profit in 
FTR auction using (1a) that models the FTR cost in the first term 
(𝑀𝐶𝑃%𝐹𝑇𝑅%*) and FTR revenue in the second term ((𝐿𝑀𝑃0,*(75 −
𝐿𝑀𝑃0,*89:-%	)	𝐹𝑇𝑅%*). FTR unit price (𝑀𝐶𝑃%) comes from the FTR 
auction clearing procedure that is modeled at the LL subproblem 
((1d)–(1k)). Additionally, FTR revenue requires the second stage 
information (DA LMP difference between sink and source buses) 
to be calculated. In this model Ω!"#$ =	$𝐹𝑇𝑅%&'() , 𝜌%*	* is the MP’s 
set of decision variables in the UL subproblem. FTR bid quantity 
is bounded by (1b) and (1c), forcing the FTR bid price to be 
positive. FTR auction model seeks to minimize the minus social 
welfare [1] regarding the simultaneous feasibility test (SFT) 
constraints. LL decision variables are represented by Ω+"#$ =
	$𝐹𝑇𝑅%*, 𝐹𝑇𝑅,, 𝐹𝑇𝑅-*. Cleared FTR quantities are bound by their 
maximum and minimum FTR bids or offers in (1e)–(1g). 
Constraint (1h) limits the line flows calculated by (1i) to the 
transmission line capacities. 𝐿𝐹;%<  in (1h) denotes the line flows 
caused by the existing FTRs contracted in the secondary market 
[1, 3]. Employing the Lagrangian coefficients of (1h), FTR auction 
price can be determined by (1j). Note that shift factor versus FTR 
bids/offers (𝐻;=) is required to calculate the line flows and FTR 
auction price in this model. This parameter can be obtained by 
subtracting the PTDF of the line 𝑙 vs. the 𝑠𝑜𝑢𝑟𝑐𝑒 from that of the 
𝑠𝑖𝑛𝑘	buses (1k). The FTR auctioneer takes 𝜌%*  as a parameter, 
meaning the LL subproblem is linear and convex, thus, it is 
replaced by KKT conditions. Therefore, the Model (1) is written 
as a single level optimization problem known as MPEC which is 
detailed in APPENDIX A.  

B.  Second Stage: Bidding strategy model in DA market 

As explained, FTR revenue is calculated using the DA LMPs at 
𝑠𝑖𝑛𝑘 and 𝑠𝑜𝑢𝑟𝑐𝑒 buses. It is assumed that the MP is a price-maker 
player in the DA market, thus it is needed to model the MP’s 
bidding strategy decision-making problem in the DA market and 
study the effects of its offers (quantity and price) on the DA market 
clearing outcomes. Furthermore, the strategic MP submits the 
virtual bids from different locations in the DA market, which 
empowers the MP to change the DA LMPs for its own interest. 
Therefore, the second stage of the proposed model represents the 
bidding strategy problem of the MP and aims to maximize the 
MP’s payoff in the DA market as follows: 

 

Upper-Level 
Min.
Ω!>?

& [𝜆')10 − 𝐿𝑀𝑃'*]	𝑃')10
'()∈A')1

− & [𝐿𝑀𝑃'* − 𝜆'*$#]	'𝑉'C
>?D − 𝑉'C>?21

'(C∈A')

 

(2a) 
s.t:  
&𝑃('E!))1&

1

−&𝑃')1&
1

≤ 𝑅)FG,					∀𝑡, 𝑖 (2b) 

&𝑃')1&
1

−&𝑃('E!))1&

1

≤ 𝑅)HI,					∀𝑡, 𝑖 (2c) 

0 ≤ 𝑃')101)2 ≤ 𝑃')1
0
,					∀𝑡, 𝑖, 𝑏 (2d) 

0 ≤ 𝑉'C1)2J ≤ 𝑉'C
1-2D%'𝑈𝑔'C ,					∀𝑡, 𝑣 (2e) 

0 ≤ 𝑉'C1)2> ≤ 𝑉'C
1-2D%'𝑈𝑑'C,						∀𝑡, 𝑣 (2f) 

𝑈𝑔'C +	𝑈𝑑'C ≤ 1,					∀𝑡, 𝑣 (2g) 
𝛼')10 ≥ 0, 𝛼'C1)2J ≥ 0, 𝛼'C1)2> ≥ 0 (2h) 

Lower-Level 

𝑃')10 , 𝑉'C1)2J , 𝑉'C1)2> ∈ arg 	{ 
Min.
Ω3>?

&𝛼')10 𝑃')10
')1

+&𝜆'K1
D 𝑃'K1

D

'K1

−&𝜆'2+2 𝑃'2+2
'2+

+	&(𝛼'C1)2J𝑉'C
>?D − 𝛼'C1)2>𝑉'C>?2)

'C

 
(2i) 

s.t: 

&(𝑉'C
>?D − 𝑉'C>?2)

C∈A'

+ & 𝑃')10
()∈A')1

+ & 𝑃'K1
D

(K∈A')1

− & 𝑃'2+2
(2∈A')+

= 𝑖𝑛𝑗'* ∶ 	 𝐿𝑀𝑃'*,					∀𝑡, 𝑛 
(2j) 

0 ≤ 𝑃')1& ≤ 𝑃')101)2 		 ∶ 	 𝜇')10 	, 𝜇')1
0 ,			∀𝑡, 𝑖, 𝑏 (2k) 

0 ≤ 𝑃'K1
D ≤ 𝑃'K1

J
		 ∶ 	 𝜇'K1J 	, 𝜇'K1

J ,			∀𝑡, 𝑗, 𝑏 (2l) 

0 ≤ 𝑃'2+2 ≤ 𝑃'2+
>

	 ∶ 	 𝜇'2+> 	, 𝜇'2+
> ,			∀𝑡, 𝑑, 𝑘 (2m) 

0 ≤ 𝑉'C
>?D ≤ 𝑉'C1)2J 	 ∶ 	 𝜇'C

LD	, 𝜇̅'C
LD		,			∀𝑡, 𝑣 (2n) 

0 ≤ 𝑉'C>?2 ≤ 𝑉'C1)2> 	 ∶ 𝜇'CL2	, 𝜇̅'CL2			,				∀𝑡, 𝑣 (2o) 

−𝐹; ≤ 𝐹'; ≤ 𝐹; 	 ∶ 		 𝜗';	, 𝜗';						∀𝑡, 𝑙 (2p) 

&𝑖𝑛𝑗'*
*

= 0						,				∀𝑡 (2q) 

𝐹'; =&𝑃𝑇𝐷𝐹*;
*

𝑖𝑛𝑗'*						∀𝑡, ∀𝑙				}. (2r) 

The objective function (2a) consists of two terms that represent 
the negative of MP’s profits, as obtained by physical power 
generation and virtual bid, respectively. Ramp-up and ramp-down 
constraints of physical generations are represented by (2b) and 
(2c). Constraints (2d)–(2f) denote the maximum and minimum 
physical power offers and virtual bids, respectively. Constraint 
(2g) declares that the virtual bids cannot be simultaneously 
generation and demand at each time period. Nonnegativity 
constraints of offers/bids prices are illustrated by (2h). The set of 
UL decision variables is Ω!./ =	 $𝑃0('&'() , 𝛼0('& , 𝑉01'()2 , 	𝛼01'()2 , 𝑉01'().,
𝛼01'()., 𝑈𝑔01, 𝑈𝑑01*. 

The objective of the LL subproblem that represents the DA 
market clearing model is to minimize the negative of social 
welfare. The first two terms of the objective function (2i) represent 
the physical generations offers of the strategic and nonstrategic 
MPs, respectively. The third term models the physical loads bids 
and the fourth term denotes the virtual generations and demands 
bids. Generation-load balance constraint is represented by (2j). 
Constraints (2k)–(2o) limit the strategic MP’s generation power, 
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nonstrategic MP’s generation power, loads power, virtual 
generation, and virtual demand quantities to their corresponding 
maximum and minimum offers or bids. Power flows of 
transmission lines, which are calculated by (2r), are bounded by 
their maximum capacities (4p). The LL decision variable set is 
stated as Ω+./ =	 1𝑃0('& , 𝑃03'

4 , 𝑃0)5) , 𝑉01
./4, 𝑉01./)2 . ISO takes the offer 

price of physical generation along with the bid prices of virtual 
transactions as parameters, thus the LL subproblem is linear and 
convex. Employing the methodology introduced in the subsection 
IV.A, the single level optimization model of the second stage 
problem is constructed as expressed in APPENDIX B.  

It is worth mentioning that the nonlinear terms in the objective 
functions (1a) and (2a) are linearized using the SDT approach [35]. 
Moreover, complementarity nonlinear constraints can be 
linearized using Big M method. For clarity, these linearized 
formulations are presented in APPENDIX C. 

Note that although the MP’s bidding strategy model in FTR 
auction depends on the DA market outcomes, the actual DA 
market model is independent of the FTR auction model and no 
FTR market outcomes is needed to create the bidding strategy 
model in DA market. To solve this issue, the second term of the 
objective function (1a) is transferred to the second stage objective 
function (2a). This way, the required transition information from 
the first stage problem to the second stage problem will be 𝐹𝑇𝑅%*, 
and the objective value of the second stage will be the required 
data passed from the second stage problem to the first stage 
problem. This is noticeably depicted in Fig. 7.   

C.   Proposed two-stage two-level optimization model 

Having the two-level optimization models for both stages, 
along with the required transition information between these 
stages, the final model is formulated as shown: 

Minimize
Δ &e−&𝜌6𝐹𝑇𝑅6

6

+&𝜎/𝐹𝑇𝑅/
6

+&𝜏6	𝐹𝑇𝑅6
6'

+&𝜏/	𝐹𝑇𝑅/
/

+&f𝜉; +	𝜉;g 𝐹;
';

− '𝐿𝑀𝑃',&)*+ − 𝐿𝑀𝑃',&,-./%	1𝐹𝑇𝑅%&h

+	i&e𝜆')10 𝑃')1& + & 𝜆'*$#'𝑉'C
>?D − 𝑉'C>?21

'(C∈A')

h
')1

+ e&𝜆'K1
D 𝑃'K1

D

'K1

+&𝜇'K1
J 𝑃'K1

J

'K1

−&𝜆'2+2 𝑃'2+2
'2+

+&𝜇'2+
> 𝑃'2+

>

'2+

+&'𝜗'; + 𝜗';1𝐹;
';

hj 

(3a) 
Constraints (C.2), (C.3), (C.5), (C.6)  (3b) 

where the decision variable set is Δ = {Ω1𝐹𝑇𝑅	, Ω2𝐹𝑇𝑅, Ω1𝐷𝐴	, Ω2𝐷𝐴,
all	corresponding	dual	variables}. Equation (3b) represents the 
first and second stages’ constraints, which are described in 
APPENDIX C.  
 

V.  ILLUSTRATIVE EXAMPLE  

To illustrate the mechanism and the functionality of the 
proposed model, an illustrative example is designed for this 
section, and it is implemented on 5-bus test system [38].  

A.  Data 

To assist the strategic MP in making its joint bidding decisions, 
other players’ data in both FTR auction and DA market are 
required. Fig. 8 depicts the 𝑠𝑖𝑛𝑘 and 𝑠𝑜𝑢𝑟𝑐𝑒 buses of all players’ 
offers/bids. Note that 𝑠𝑖𝑛𝑘 and 𝑠𝑜𝑢𝑟𝑐𝑒 buses could be determined 
based on the DA LMP forecast; however, this paper focuses on the 
design of the bidding strategy of MPs, and this topic is out of the 
scope of this research. Strategic MP is assumed to be a buyer in 
the FTR auction and tends to buy FTR from bus 2 to bus 5 (FTR5 
in Fig. 8). Detailed information of seven players offers/bids in FTR 
auction is summarized in Table I that represents the FTR number, 
source and sink buses, players status, bid prices and quantities in 
different columns.  

 
Fig. 8. FTR offers and bids illustration in 5-bus test system 

TABLE I. FTR OFFERS/BIDS OF ALL MPS IN THE FTR AUCTION 
FTR 

# 
Source  

(busNo.) 
Sink  

(bus No.) 
Status  

(Buyer/Seller) 
Bid Price 
($/MWH) 

Bid Quantity 
 (MW) 

1 1 4 Seller 5 75 
2 5 2 Buyer 8 140 
3 5 3 Seller 6 120 
4 1 4 Buyer 9 110 
5 5 2 Buyer Variable Variable 
6 5 2 Buyer 8 100 
7 5 2 Buyer 10 100 

Offers/bids of all physical generators/loads in DA market are 
depicted in Fig. 9 beside their corresponding elements. Moreover, 
the transmission lines capacities are displayed on corresponding 
lines. It is assumed that the strategic MP owns a generator 5 (G5) 
located at bus “E” with the marginal cost equal to $35/MWH.  

 
Fig. 9. Offers/bids of all physical generators/loads in DA market 

B.  Case Design 
To present the effectiveness of the proposed model, four 

different cases are designed as follows. 
Ø Case 1: the strategic MP bids separately in FTR auction and 

DA market with the assumption that the accurate prediction of 
DA LMP difference between source and sink buses (DLMP) 
is available. In this case, Model (C) [described in APPENDIX 



8                                       IEEE TRANSACTIONS ON POWER SYSTEMS 

C] are solved separately to determine the bidding strategies of 
the MP in FTR auction and DA market.  

Ø Case 2: this case is similar to Case 1, except that the accurate 
DLMP forecast is not available.  

Ø Case 3: in Case 1 and Case 2, the strategic MP’s bidding 
decisions in FTR auction are not included in the MP’s 
decision-making process in DA market, which is considered 
in this case. Therefore, Model (C.1–C.3) is solved at the first 
step, similar to Case 2, and then the cleared FTR quantity and 
FTR auction price are passed to the modified version of Model 
(C.4–C.6) that includes the first stage results in its objective 
function to capture the bidding decision of MP for the DA 
market. 

Ø Case 4: applies the proposed joint bidding strategy decision 
making model (Model (3)) that simultaneously optimize the 
decisions of the MP in FTR auction and DA market. 

Note that to emphasize the influence of the virtual bids on the 
final decisions and profit of the strategic MP, these designed cases 
are solved twice, with and without considering the virtual bids, and 
the results are compared afterwards.  
C.  Results 

Strategic MP’s FTR auction profit, DA market profit, and total 
profit are illustrated in Fig. 10. Employing inaccurate DA LMP 
predictions in Case 2 and Case 3 causes negative profits in FTR 
auction for these cases. However, including the FTR bidding 
decisions in the second stage of Case 3, makes the MP offer its 
power with higher price ($53.3/MWH) in the DA market, so the 
DA LMP at bus 2 will be $70/MWH because of the congestion at 
line BC. This causes the value of FTR to change from [(55.017 – 
44.57) – 30.3 = $(–19.85)/MWH] in Case 2 to [(70 – 53.3) – 30.3 
= $(–13.6)/MWH] in Case 3; therefore, MP loses less money from 
the FTR auction (Table II). Although this action caused lower 
profit in the DA market because of the MP’s lower cleared power 
(133.18MW) in Case 3 in comparison with that of Case 2 (270.45 

MW), the total profit in Case 3 is higher than in Case 2.  

 
Fig. 10. MP’s FTR profit, DA profit, and Total profit in different cases 

Comparison between Case 1 and Case 4 declares that although 
the bidding decisions of MP in FTR auction in both cases are the 
same (Table II), MP differs its strategy in the DA market (offers 
its power with higher price) to increase the FTR value from 
[(55.017 – 44.57) – 10 = $0.45/MWH] in Case 1 to [(70 – 53.3) – 
10 = $6.7/MWH] in Case 4, thereby making more profit in the FTR 
auction. This way, MP loses a small amount of money in the DA 
market, however, this change in the DA profit is smaller than the 
MP’s FTR auction profit. Put simply, the strategic MP 
intentionally loses money in the DA market (by its strategic 
decisions) to increase the FTR value and maximize its total profit.  
To present the effect of virtual bids on MP’s bidding strategy 
decision making, it is assumed that the strategic MP is able to 
submit the maximum virtual bids (generation/load) of 200MW in 
buses 2 and 5. Real-time prices are predicted to be $30/MWH for 
all buses. Table III summarizes the results of different cases 
implementation considering the virtual bids. Comparing the results 
of Case 2 and Case 3 in this test with the results of the same cases 
without considering the virtual bids, shows that the MP can make 
more total profits in both cases. This happens because MP prefers 
to employ virtual generation at bus 5 instead of submitting the 
expensive physical generation to alter the DA LMPs.  

TABLE II. RESULTS OF DIFFERENT CASES FOR ILLUSTRATIVE EXAMPLE WITHOUT CONSIDERING VIRTUAL BIDS  
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Case 1 Separately 10 94.99 10 44.57 270.45 44.57 55.017 42.46 2588.15 2630.61 
Case 2 Separately 30.3 97.37 30.3 44.57 270.45 44.57 55.017 -1934.65 2588.15 653.51 
Case 3 Separately   97.37 30.3 53.3 133.18 53.3 70 -1325.4 2436.62 1111.22 
Case 4 Jointly 10 94.99 10 53.3 133.18 53.3 70 636.8 2436.62 3073.4 

TABLE III.  RESULTS OF DIFFERENT CASES FOR ILLUSTRATIVE EXAMPLE WITH CONSIDERING VIRTUAL BIDS  
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Fig. 11. MP’s FTR profit, virtual bidding profit, DA market, and Total profit in 
different cases 

According to Fig. 11, virtual bids provide the ability to make 
the strategic MP increase the FTR value and also make more profit 
from virtual bidding in DA market, which results in a higher total 
profit in Case 4 compared to Case 1. To be more specific, it can be 
said that the MP prefers to submit the lower virtual generation 
(77.56MW) at bus 2 with the higher price ($70/MWH) in Case 4 
instead of selling 200MW at bus 5 with the lower price ($44.57) in 
Case 1. This way MP makes more profit from virtual bidding, and 
at the same time, the FTR value raises to $6.7/MWH.   

To further specify the advantages of employing virtual bids, the 
results of Case 4 without virtual bids (Table II) were compared to 
the results of Case 4 when the MP employs virtual bids (Table II). 
Fig. 12 summarizes the comparison between these two results. As 
shown, virtual bid assists the MP to increase the FTR value with 
lower cost in the DA market and maximize its total profit. In other 
words, virtual bidding provides a noticeable opportunity for MP to 
increase the DA market profit and raise the FTR value more 
economically. 

 
Fig. 12. MP’s profit from FTR, virtual bidding, physical generation, and Total profit 
in Case 4 with and without employing virtual bids  
 

VI.  CASE STUDY  
To demonstrate the effectiveness of the proposed joint bidding 

strategy model and the value of utilizing the virtual bidding, Model 
(3) is solved for the strategic generating company participating in 
the FTR auction and DA market in the 24-bus test system [39].  

A.  Data 
Many ISOs in the US publish some of the historical market data 

such the market clearing results, historical bids and offers, and etc. 
for different electricity markets [40 - 44]. Such information may 
be used by the strategic MP to formulate, estimate and forecast the 
parameters needed for the decision making of the MP. In this work, 
all data are selected based on generator characteristics [45] and 
financial constraints [46] to be aligned with real-world data. It is 
assumed that 16 sellers and 24 buyers submit their offers and bids 
into the FTR auction, as exemplified in Table IV. The strategic MP 
plans to purchase eight FTRs from different 𝑠𝑖𝑛𝑘  and 𝑠𝑜𝑢𝑟𝑐𝑒 
buses in this auction. 

Furthermore, the strategic MP is assumed to own 7 generating 
units in different locations of the system; their maximum 
capacities and marginal costs are listed in Table V. 

 
TABLE IV. FTR OFFERS/BIDS OF ALL MPS IN THE FTR AUCTION FOR 24-BUS SYSTEM 

FTR # Source  
(bus #) 

Sink  
(bus #) Status Bid Price 

($/MWH) 
Bid Quantity 

 (MW) FTR # Source  
(bus #) 

Sink  
(bus #) Status Bid Price 

($/MWH) 
Bid Quantity 

 (MW) 
1 23 12 Seller 3 50 21 12 9 Seller 8 120 
2 23 13 Seller 3 80 22 11 10 Seller 7 140 
3 23 12 Buyer Variable Variable 23 24 3 Seller 6 120 
4 23 12 Buyer 15 100 24 24 3 Buyer Variable Variable 
5 23 12 Buyer 10 120 25 24 3 Buyer 13 50 
6 23 13 Buyer 15 110 26 24 3 Buyer 14 75 
7 23 13 Buyer Variable Variable 27 14 11 Seller 4 190 
8 23 13 Buyer 9 90 28 15 16 Seller 3 120 
9 16 14 Buyer Variable Variable 29 7 8 Buyer Variable Variable 

10 16 14 Buyer 11 200 30 7 8 Seller 7.5 120 
11 15 21 Buyer Variable Variable 31 7 8 Buyer 15 60 
12 16 14 Buyer 12 150 32 24 15 Seller 4 240 
13 16 14 Seller 4 100 33 22 21 Buyer Variable Variable 
14 15 21 Buyer 11.5 300 34 12 10 Buyer 12 200 
15 15 21 Buyer 10 120 35 12 10 Seller 6.5 80 
16 15 21 Seller 3.5 50 36 16 19 Seller 8 100 
17 17 16 Seller 4 60 37 17 18 Buyer 10.5 200 
18 22 17 Buyer Variable Variable 38 17 22 Seller 5.5 150 
19 17 16 Buyer 9.5 160 39 11 10 Buyer 15 50 
20 11 9 Seller 3.5 105 40 24 15 Buyer 12.5 75 

TABLE V. STRATEGIC GENERATING UNITS DATA 
Gen # 𝑷l𝒕𝒊𝒃𝑺  

(MW)  
𝝀𝒕𝒊𝒃𝑺  

($/MWH) 
(Bus #) 

G1 76 15 1 
G2 76 15 2 
G3 400 7 7 
G4 70 4 13 
G5 197 20 16 
G6 155 13 21 
G7 155 13 23 

Predicted offer quantities and prices for 25 other generators in 
DA market are summarized in Table VI. These are presumed to be 
the same for all periods of time. Locations and maximum bid 
quantities of 17 loads in this system are shown in Table VII, and 
the bid prices in different time periods are depicted in Fig. 13. Note 
that three different bid price profiles used for different loads in 
different location.  
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TABLE VI. GENERATION UNITS’ OFFER QUANTITIES AND PRICES 

Gen # 𝑷C𝒕𝒋𝒃𝑮  
(MW)  

𝝀𝒕𝒋𝒃𝑮  
($/MWH) 

(Bus #) Gen # 𝑷C𝒕𝒋𝒃𝑮  
(MW)  

𝝀𝒕𝒋𝒃𝑮  
($/MWH) 

(Bus #) 

G1 21 16 1 G14 12 27 15 
G2 21 16 1 G15 155 13 15 
G3 21 16 1 G16 76 15 15 
G4 21 16 2 G17 70 4 18 
G5 90 18 2 G18 70 4 22 
G6 90 22 2 G19 70 4 22 
G7 90 22 7 G20 70 4 22 
G8 155 13 7 G21 70 4 22 
G9 155 13 13 G22 90 22 22 

G10 12 27 13 G23 155 13 22 
G11 12 27 15 G24 90 22 23 
G12 12 27 15 G25 197 20 23 
G13 12 27 15     

TABLE VII. LOAD BID QUANTITIES AND PRICES 

Load # 𝑷l𝒕𝒅𝒌𝑫  
(MW)  (Bus #) Load # 𝑷l𝒕𝒅𝒌𝑫  

(MW)  (Bus #) 

L1 105 1 L10 188 10 
L2 92 2 L11 255 13 
L3 172 3 L12 188 14 
L4 73 4 L13 305 15 
L5 71 5 L14 98 16 
L6 133 6 L15 323 18 
L7 119 7 L16 174 19 
L8 165 8 L17 126 20 
L9 167 9    

 
Fig. 13. Load bid price profile 
 

B.  Results  

The offering strategy problem is solved for the four designed 
cases introduced in the previous section, and the models are tested 
for the strategic MP with and without virtual bidding capability. 
Fig. 14 shows the GenCo’s profits in FTR auction, DA market and 
its total profit when the virtual bidding capability is not considered. 
Inaccurate DA LMPs forecast causes lower FTR profits in Case 2 
and Case 3, which results in the lower total profit for these cases. 
The DA profit of MP is lower in Case 4 compared to Case 1; 
however, this is opposite for the FTR profit regarding these cases. 
This declares that the MP strategically loses a small amount of 
money in the DA market to increase the FTR value and optimize 
its total profit.  

Applying the virtual bidding, MP finds more opportunities to 
raise the FTR value and maximize its total profit. More 
specifically, Fig. 15 presents the MP’s profits from both physical 
generation and virtual bidding in DA market are higher in Case 1 
than in Case 4. However, with this strategy, MP increases its FTR 
profit from $85k to approximately $265k, and as a result, makes 
more total profit. Note that it is assumed that the MP submits its 
virtual transactions from various locations (buses 3, 7, 11, 14, 17, 
and 22 in this study), and the forecasted real-time LMPs are 
assumed to be $20/MWH for all time periods.  

 
Fig. 14. MP’s profits in FTR auction, DA market as well as its total profit without 
considering the virtual bids 

  
Fig. 15. MP’s profits from FTR, virtual bidding, physical generation along with its 
total profit 

Comparing Case 4 from two tests (with and without virtual 
bidding) in Fig. 16 depicts that the presence of virtual bids can help 
the MP manipulate the FTR value and increase the FTR profit and 
improve the DA market profit.  

 
Fig. 16. MP’s profits from FTR, virtual bidding, and physical generation as well as 
its total profit in Case 4 with two tests (with and without considering virtual bids) 
 
 

VII.  CONCLUSION 
This paper proposed a joint offering strategy model for a 

strategic GenCo with virtual bidding capability to participate in 
both FTR auction and DA market, in markets where simultaneous 
participation in virtual transactions and FTR auction is allowed. 
First, using a simple example, it was demonstrated that virtual bids 
can be used to manipulate the FTR values. Next, the proposed 
model was developed and solved by employing the SDT and KKT 
optimality conditions. Further, various cases were designed to 
illustrate the effectiveness of the model and value of utilizing 
virtual bidding in the MP’s offering strategy decision making 
process. In summary, the conclusions of this work are listed below.  
• A strategic GenCo faces complicated decision making due to 

the competing goals. It must delicately balance multiple 
objectives in the decision-making, such as (a) the tradeoff 
between the profits in FTR auction and the DA market due to 
the impact of DA LMP on FTR revenue; (b) tradeoff between 
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profits of virtual bids and physical generation in the DA 
market due to both affecting DA LMPs; and (c) tradeoff 
between the FTR quantity and its impact on FTR auction price 
as both relate to FTR profit. 

• Based on the proposed model, the MP may choose a tactic 
that, by using virtual bids and its physical generation, can 
make higher profits through joint participation in FTR and DA 
markets. In fact, virtual bidding can create an opportunity for 
MP to increase the FTR value by manipulating the DA LMP 
at specific locations of the system. In some cases, manipulated 
DA LMP can result in reduced or negative profit from virtual 
bidding. Despite the resulting profit in DA market is reduced, 
the profit from FTR market is much increased and so is the 
total profit. 

A strategic MP faces multiple uncertainties such as forecasted 
RT prices and other players’ offers/bids in the decision-making 
process. Considering these uncertain parameters in the proposed 
model and applying an appropriate solution methodology for this 
problem can be the focus of future work. 

 

APPENDIX A 

Mathematical Problem with Equilibrium Constraints (MPEC) 
model for the first stage problem. 

  
Objective Function (1a) (A.1) 

s.t:  
Constraints (1b), (1c), (1i) and (1j) (A.2) 

−𝜌%& + 𝜏%
0 − 𝜏%0 +𝑀𝐶𝑃% = 0,					∀𝑒 (A.3) 

−𝜌6 + 𝜏6 − 𝜏6 +𝑀𝐶𝑃6 = 0, ∀𝑓 ∈ {𝑁:-. − 𝑒} (A.4) 
𝜎/ + 𝜏/ − 𝜏/ −𝑀𝐶𝑃/ = 0,					∀𝑐 ∈ 𝑁&%;; (A.5) 
0 ≤ 𝐹𝑇𝑅%01)2 − 𝐹𝑇𝑅%& ⊥ 	 𝜏%

0 ≥ 	0	, ∀𝑒 (A.6) 
0 ≤ 𝐹𝑇𝑅%& ⊥ 	 𝜏%0 ≥ 	0, ∀𝑖 (A.7) 
0 ≤ 𝐹𝑇𝑅6 − 𝐹𝑇𝑅6 ⊥ 	 𝜏6 ≥ 0, ∀𝑓 (A.8) 
0 ≤ 𝐹𝑇𝑅6 ⊥ 	 𝜏6 ≥ 0, ∀𝑓 (A.9) 
0 ≤ 𝐹𝑇𝑅/ − 𝐹𝑇𝑅/ ⊥ 	 𝜏/ ≥ 0,			∀𝑐 ∈ 𝑁&%;; (A.10) 
0 ≤ 𝐹𝑇𝑅/ ⊥ 	 𝜏/ ≥ 0,						∀𝑐 ∈ 𝑁&%;; (A.11) 
0 ≤ 𝐹; − 𝐿𝐹;%< − 𝐿𝐹; ⊥ 	 𝜉; ≥ 0,					∀𝑙 (A.12) 

0 ≤ 𝐹; + 𝐿𝐹;%< + 𝐿𝐹; ⊥ 	 𝜉; ≥ 0,					∀𝑙 (A.13) 

In (A), the nonlinear objective function is the same as in Model 
(1). Constraint (A.2) replicates (1b), (1c), (1i) and (1j) constraints. 
The first derivatives of the Lagrangian function with respect to the 
decision variables are shown in (A.3)–(A.5), and the nonlinear 
complementarity constraints that result from the inequality 
constraints of the LL subproblem of Model (1) are shown in (A.6)–
(A.13). 

 

APPENDIX B 

Mathematical Problem with Equilibrium Constraints (MPEC) 
model for the second stage problem. 

Objective Function (2a) (B.1) 
s.t:  

Constraints (2b)–(2h) (B.2) 

𝛼')1& − 𝐿𝑀𝑃'* + 𝜇')1
0 − 𝜇')10 = 0, ∀𝑡, 𝑖 ∈ 𝜓*, 𝑏 (B.3) 

𝜆'K1
D − 𝐿𝑀𝑃'* + 𝜇'K1

J − 𝜇'K1J = 0, ∀𝑡, 𝑗 ∈ 𝜓*, 𝑏 (B.4) 

−𝜆'2+2 + 𝐿𝑀𝑃'* + 𝜇'2+
> − 𝜇'2+> = 0, ∀𝑡, 𝑑 ∈ 𝜓*, 𝑘 (B.5) 

𝛼'C1)2J − 𝐿𝑀𝑃'* + 𝜇̅'C
LD − 𝜇'C

LD = 0, ∀𝑡, 𝑣 ∈ 𝜓* (B.6) 
−𝛼'C1)2> + 𝐿𝑀𝑃'* + 𝜇̅'CL2 − 𝜇'CL2 = 0, ∀𝑡, 𝑣 ∈ 𝜓* (B.7) 

Constraints (2j) and (2q) and (2r) (B.8) 

0 ≤ 𝑃')10 ⊥ 	𝜇')10 ≥ 0,				∀𝑡, 𝑖, 𝑏 (B.9) 

0 ≤ 𝑃')101)2 − 𝑃')10 ⊥ 𝜇')1
0 ≥ 0,			∀𝑡, 𝑖, 𝑏 (B.10) 

0 ≤ 𝑃'K1
D ⊥ 	𝜇'K1J ≥ 0,				∀𝑡, 𝑗, 𝑏 (B.11) 

0 ≤ 𝑃'K1
J
− 𝑃'K1

D ⊥ 𝜇'K1
J ≥ 0,			∀𝑡, 𝑗, 𝑏 (B.12) 

0 ≤ 𝑃'2+2 ⊥ 	𝜇'2+> ≥ 0,				∀𝑡, 𝑑, 𝑘 (B.13) 

0 ≤ 𝑃'2+
>

− 𝑃'2+2 ⊥ 𝜇'2+
> ≥ 0,			∀𝑡, 𝑑, 𝑘 (B.14) 

0 ≤ 𝑉'C
>?D ⊥ 	𝜇'C

LD ≥ 0,					∀𝑡, 𝑣 (B.15) 
0 ≤ 𝑉'C>?2 ⊥ 	𝜇'CL2 ≥ 0,					∀𝑡, 𝑣 (B.16) 

0 ≤ 𝑉'C1)2J − 𝑉'C
>?D ⊥ 	 𝜇̅'C

LD ≥ 0,					∀𝑡, 𝑣 (B.17) 
0 ≤ 𝑉'C1)2> − 𝑉'C>?2 ⊥ 	 𝜇̅'CL2 ≥ 0,					∀𝑡, 𝑣 (B.18) 
0 ≤ 𝐹'; + 𝐹; ⊥ 𝜗'; 	≥ 0						∀𝑡, 𝑙 (B.19) 

0 ≤ 𝐹; − 𝐹'; ⊥ 	𝜗'; ≥ 0						∀𝑡, 𝑙 (B.20) 

In (B), the objective function and the UL constraints (2b)–(2h) 
are duplicated in (B.1) and (B.2). The first derivative of 
Lagrangian function with respect to the decision variables are 
denoted by (B.3)–(B.7). The equality constraints (2j), (2q), and 
(2r) are summarized in (B.8). Constraints (B.9)–(B.20) represent 
the nonlinear complementarity constraints regarding the inequality 
constraints (2k)–(2p). 

 

APPENDIX C 

To linearize the first nonlinear term of the objective function 
(1a (or A.1)), the SDT approach is employed, which is well 
described in [35]. Thus, applying these methods to (A) results in 
the following model with linear constraints. 

𝑶𝑭𝟏 =
Minimize
Ω!"#$ , Ω3"#$

&e−&𝜌6𝐹𝑇𝑅6
6

+&𝜎/𝐹𝑇𝑅/
6

+&𝜏6	𝐹𝑇𝑅6
6'

+&𝜏/	𝐹𝑇𝑅/
/

+&f𝜉; +	𝜉;g 𝐹;
';

− '𝐿𝑀𝑃',&)*+ − 𝐿𝑀𝑃',&,-./%	1𝐹𝑇𝑅%&h 
(C.1) 

s.t:  
Constraints (A.2)–(A.5) (C.2) 

Linearized form of (A.6)–(A.13) (C.3) 

Moreover, complementarity nonlinear constraints can be 
linearized using Big M method. Thus, each of the equations of 0 ≤
𝑋0( ⊥	𝑑0((𝑥) ≥ 0 can be rewritten as follows. 

0 ≤ 𝑋0( ≤ 𝑀0(	𝜔0( , 		0 ≤ 	𝑑0((𝑥) ≤ (1 − 𝜔0()	𝑀0(	 

 where 𝑀0( is a large number and 𝜔0( is a binary variable. 

Applying SDT and Big M methods, the equivalent linear 
formulation of the problem (B) is obtained as follows.  
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𝑶𝑭𝟐 = 	
Minimize
Ω!>?, Ω3>?

i&e𝜆')10 𝑃')1& + & 𝜆'*$#'𝑉'C
>?D − 𝑉'C>?21

'(C∈A')

h
')1

+ e&𝜆'K1
D 𝑃'K1

D

'K1

+&𝜇'K1
J 𝑃'K1

J

'K1

−&𝜆'2+2 𝑃'2+2
'2+

+&𝜇'2+
> 𝑃'2+

>

'2+

+&'𝜗'; + 𝜗';1𝐹;
';

hj 
(C.4) 

s.t:  
Constraints (B.2)–(B.8) (C.5) 

Linearized form of (B.9)–(B.20) (C.6) 
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