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Abstract—Pumped storage hydro (PSH) plant is a valuable
resource with storage and fast ramp capabilities, which can
manage the intermittency of renewable energy. An accurate
model for the input-output curve of PSH plant can capture
its varying efficiency feature and enable accurate evaluations of
available generating/pumping capability. However, the trade-off
between approximation accuracy and computation time poses a
significant challenge for input-output curve modeling. In this pa-
per, we develop a hypograph-relaxation-based input-output curve
modeling framework, wherein sufficient conditions for exact
hypograph relaxation are defined, proved, and analyzed for fixed-
speed PSH considering the value of water in the upper reservoir.
Under this framework, a novel disjunctive convex hull model is
proposed to balance the aforementioned trade-off. Our model can
take advantage of high accuracy in time-consuming piece-wise
approximation models, and acceptable computation burden in
less-accurate convex hull models. To divide a given input-output
curve into various components that can be approximated by
their respective convex hulls, we propose to use an approximate
convex decomposition (ACD) based approach. The proposed
model is tested for profit maximization problems using real-world
Ludington PSH station data. Numerical results demonstrated the
superior computational advantage of the proposed approach.

Index Terms—Pumped storage hydro, input-output curve, hy-
pograph relaxation, disjunctive convex hull, mixed-integer linear
program.

NOMENCLATURE

Indices and Sets
t, h, r Index for time periods, PSH units, and reser-

voirs.
T ,R Set of time periods and reservoirs.
Hr Set of PSH units that are connected to upper

reservoir r.
Ig
h, I

p
h Set of convex components for generating and

pumping modes of PSH unit h.
Ki,Kupper

i Set of inequalities, which represent planes, in
convex component i and the upper convex hull
of component i.

Lg
h,L

p
h Set of binary variable indices ζ for generating

and pumping modes of PSH unit h.
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Parameters and Functions

Nt Number of time periods.
∆t Length of each time period.
P g

h, P
g
h Minimum and maximum generating power for

PSH unit h.
Qg

h
, Q

g
h Minimum and maximum flow rate for PSH

unit h in the generating mode.
P p

h, P
p
h Minimum and maximum pumping power for

PSH unit h.
Qp

h
, Q

p
h Minimum and maximum flow rate for PSH

unit h in the pumping mode.
V r, V r Minimum and maximum water volume for

reservoir r.
q̂infl
r,t , q̂

outfl
r,t Flow rate for natural inflow to and outflow

from reservoir r in time period t.
λ̂h,t Locational marginal price forecast for PSH

unit h in time period t.
ϕg
h(·), ϕp

h(·) Input-output curve function for generating and
pumping modes of PSH unit h.

vowr(·) Value-of-water function for reservoir r.
γpg
h,i,k, γ

qg
h,i,k,

γvg
h,i,k, γ

0
h,i,k

Coefficients for the k-th inequality in convex
component i of PSH unit h for the generating
mode.

τ qp
h,i,k, τ

vp
h,i,k

τ0h,i,k

Coefficients for the k-th inequality in convex
component i of PSH unit h for the pumping
mode.

Decision Variables

ug
h,t, u

p
h,t Binary generating and pumping status vari-

ables for PSH unit h in time period t.
pg
h,t, p

p
h,t Generating and pumping power for PSH unit

h in time period t.
qg
h,t, q

p
h,t Generating and pumping flow rate for PSH unit

h in time period t.
vr,t Volume of water in reservoir r at the end of

time period t.
sr,t Spillage from reservoir r in time period t.
φg
h,t,i, φ

p
h,t,i Selection variable for convex component i of

PSH unit h at time period t for the generating
and pumping modes (i.e, if component i is
selected, φ(·)h,t,i = 1; otherwise, φ(·)h,t,i = 0).

ζg
h,t,`, ζ

p
h,t,` Binary variables to ensure φg

h,t,i (or φp
h,t,i)

values are mutually exclusive of each other.
pg
h,t,i(q

g
h,t,i,

vg
h,t,i)

Power (flow rate, volume) ancillary variables
that correspond to convex component i in the
generating mode for PSH unit h.
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qp
h,t,i(v

p
h,t,i) Flow rate (volume) ancillary variables that cor-

respond to convex component i in the pumping
mode for PSH unit h.

vi
h,t Volume ancillary variable that corresponds to

the idle mode for PSH unit h.

I. INTRODUCTION

W ITH increasing penetration of renewable energy in
power systems worldwide, pumped storage hydro

(PSH), as the most widely used utility-scale storage, plays
an important role to address renewable energy uncertainties.
Accurate modeling of PSH plants is instrumental in ensuring
the best utilization of PSH storage capability and dispatch
flexibility. Conventionally, head-independent constant energy
conversion efficiency factors have been widely adopted to
model PSH plants in the literature [1]–[5]. However, real-
world data reveals PSH plant efficiency varies considerably
with water head and operating point, therefore constant effi-
ciency assumption may lead to considerable errors and ineffi-
ciency in PSH operation and handling of renewable energy
uncertainty [6]. It warrants more accurate modeling of the
energy conversion efficiency. However, significant modeling
and computational challenges are encountered.

The input-output curve is used to describe the relations of
generating/pumping power, flow rate, and reservoir volume (or
net head). Although nonlinear programming (NLP) approaches
are used to deal with this nonlinear and non-convex curve in
related works such as [6], mixed-integer linear programming
(MILP) serves as a state-of-art tool in the industry, as well-
designed MILP models can be efficiently solved by on-the-
shelf commercial solvers in a timely and reliable manner.
In previous works, there are two mainstream approaches to
model input-output curves (or production curves) for PSH and
conventional hydro with MILP. For convenience, we use a two-
dimensional curve y = ϕh(x) shown in Fig. 1 to conceptually
illustrate the related methods.

1) The first category is piece-wise linear approximation
methods. We start with conventional hydro units, for which
this kind of approach was developed earlier. Authors of [7]–[9]
use a two-step piece-wise linear approximation method, which
addresses the input-output under each head level first, and
then determines the power from a given head level. A direct
three-dimensional piece-wise linear approximation method is

proposed in [10], and used for a hydro-thermal unit commit-
ment problem in [11]. The authors of [12] comprehensively
summarize the piece-wise linear approximation approaches
for conventional hydro production function modeling, and
conclude the logarithmic modeling method in [13] has the best
performance at that time. For PSH units, the value of detailed
input-output curve modeling is analyzed in [14]. An early work
in [15] assumes the input-output curve is convex. The piece-
wise linear approximation method in [7]–[9] are then applied
to PSH input-output curve modeling in [14], [16], [17]. We
recently proposed to use a zig-zag piece-wise approximation
approach [18], [19] to model the PSH input-output curve in
[20], which can further reduce the solution time for time-
intensive cases in comparison to the logarithmic method in
[12]. This method can potentially be applied to conventional
hydro modeling. As indicated in Fig. 1a, the accuracy of
the piece-wise linear approximation can be enhanced with
an increased number of pieces, meanwhile the computational
burdens also increase due to the inclusion of more integer
variables.

2) An alternative kind of approach is convex hull ap-
proximation, which has only been applied to conventional
hydro modeling now. The convex hull approximation approach
is proposed for input-output curve modeling in dispatching
a centralized Brazilian hydro system in [21]. This input-
output curve model is purely linear without the inclusion
of integer variables. However, as illustrated in Fig. 1b, this
method may suffer from accuracy issues in approximating
non-concave portion of the curve. Furthermore, the approx-
imation accuracy of the convex hull approximation cannot
be improved by increasing the number of linear constraints.
Note this approach in fact relax the feasible region of an
input-output curve to its convex hull. For both conventional
hydro and PSH input-output curve modeling, how to apply
similar relaxation approaches to reduce the use of integer
variables, meanwhile ensuring acceptable accuracy, is needed
to investigate. Moreover, whether the optimal solution still
falls on the original curve is unknown when we apply similar
relaxation approaches to PSH modeling.

In this work, we first propose a hypograph relaxation
method to model input-output curves of fixed-speed PSH units.
The term “hypograph relaxation” means relaxing the input-
output curve to its hypograph. Taking y = ϕh(x) in Fig. 1c as
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Fig. 1. A comparison of modeling methods: (a) piece-wise linear modeling, (b) convex hull modeling, (c) disjunctive convex hull modeling (to explain the
concept “hypograph relaxation”), (d) disjunctive convex hull modeling (in our implementation). Note the figures here are only used for conceptual illustration
purposes. They do not necessarily present what the realistic input-output curves look like.
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an illustrative example, the union of red and purple shadowed
regions described by y ≤ ϕh(x), is the hypograph of ϕh(x). In
practice, y is usually downward bounded (such as constraints
for minimum technical power, and constraints generated by
convex hull). As shown in Fig. 1d, the union of red and purple
shadowed regions described by ψh(x) ≤ y ≤ ϕh(x), is tech-
nically a subset of the hypograph of ϕh(x). For convenience,
in this article, we also refer this as hypograph relaxation.

Furthermore, we also find the proposed hypograph relax-
ation formulation is exact under some sufficient conditions.
Then, a novel disjunctive convex hull model to describe the
hypograph relaxed feasible region, as conceptually illustrated
in Fig. 1d, is proposed for input-output curves. In compar-
ison to direct piece-wise linear approximation methods, the
proposed method exploits the partially concave properties of
the input-output curve to reduce the number of integer vari-
ables. Meanwhile, we take advantage of the integer variable
modeling to preserve approximating accuracy for the non-
concave portion of the curve, which can better address the
accuracy issue over the convex hull approximation method. In
our numerical simulation, we compare our proposed disjunc-
tive convex hull model with the zig-zag integer piece-wise
linear approximation method [20] and the purely convex hull
approximation method [21].

When using our proposed disjunctive convex hull modeling
approach, we need to calculate a high-quality partition to
divide an input-output curve (or its hypograph relaxation)
into several concave components (or convex subsets for the
hypograph relaxation). This is similar to convex decomposition
in the field of computer graphics. Exact convex decompo-
sition was proposed by early works in [22], [23], which
however suffers from generating an unmanageable amount of
convex components [24], thus might tremendously increase
the number of binary variables in our proposed disjunctive
convex hull modeling approach. The idea of approximate
convex decomposition (ACD) is to offer partitions with a small
number of components, while the approximation accuracy
can be controlled by predefined concavity metrics. A two-
dimensional ACD algorithm for polygons is first proposed
in [24], after which three-dimensional ACD approaches for
polyhedron or polygon mesh are further proposed in [25], [26].
As the metric design in the algorithm varies from applications,
in this work, we use a power-approximation-error based metric
for our ACD process. The resultant partition can balance the
approximation accuracy and the number of components for
input-output curve modeling.

The main contributions of this work are in the following,

• We propose a hypograph relaxation for fixed-speed PSH
input-output curve modeling, by extending the approach
in [21]. Sufficient conditions for exact hypograph relax-
ation in our optimization problem are provided, and the
applicability of these conditions is discussed.

• A disjunctive convex hull model is proposed for PSH
input-output curve approximation, which leverages the
advantages of the aforementioned two categories of ap-
proaches in the literature review. It can reduce the solu-
tion time under the same level of approximating accuracy.

• Customized ACD approaches are used to offer reasonable
feasible-region partitions for our proposed input-output
curve modeling approach.

II. HYPOGRAPH RELAXATION OF INPUT-OUTPUT CURVE

In this section, we first present a hypograph relaxed PSH
model, which can be used in PSH owners’ profit maximization.
Sufficient conditions for exact hypograph relaxation in our op-
timization problem are defined, proved, and further discussed.

A. PSH Model and Hypograph Relaxation

As units in a PSH plant are usually connected to a single
upper reservoir, here we show a model for an upper reservoir
indexed with r. To apply this to systems with multiple PSH
plants, the range of r can be extended to ∀r ∈ R.

1) Power Constraints: The net power output, generating
power bound, and pumping power bound constraints are
presented in (1a), (1b) and (1c), respectively. Flow rate con-
straints for the generating and pumping modes are defined
in (1d) and (1e), respectively. Equation (1f) is used to avoid
simultaneously generating and pumping. Binary variables are
declared in (1g).

ph,t = pg
h,t − p

p
h,t ∀h ∈ Hr, ∀t ∈ T (1a)

P g
h · u

g
h,t ≤ p

g
h,t ≤ P

g
h · u

g
h,t ∀h ∈ Hr, ∀t ∈ T (1b)

P p
h · u

p
h,t ≤ p

p
h,t ≤ P

p
h · u

p
h,t ∀h ∈ Hr, ∀t ∈ T (1c)

Qg
h
· ug

h,t ≤ q
g
h,t ≤ Q

g
h · u

g
h,t ∀h ∈ Hr, ∀t ∈ T (1d)

Qp
h
· up

h,t ≤ q
p
h,t ≤ Q

p
h · u

p
h,t ∀h ∈ Hr, ∀t ∈ T (1e)

ug
h,t + up

h′,t ≤ 1 ∀h, h′ ∈ Hr, ∀t ∈ T (1f)

ug
h,t, u

p
h,t ∈ {0, 1} ∀h ∈ Hr, ∀t ∈ T (1g)

If units that share the same upper reservoir are identical,
we include constraints in (2a) and (2b) to break the symmetry.
The rules for both generating and pumping modes are: lower-
priority units should not start up if higher-priority units could
be online, and higher-priority units should not shut down if
lower-priority units could be offline.

ug
h′,t − u

g
h′,t−1 ≤ u

g
h,t, u

p
h′,t − u

p
h′,t−1 ≤ u

p
h,t

∀h, h′ ∈ Hr, h
′ = h+ 1, ∀t ∈ T (2a)

ug
h,t−1 − u

g
h,t ≤ 1− ug

h′,t, u
p
h,t−1 − u

p
h,t ≤ 1− up

h′,t

∀h, h′ ∈ Hr, h
′ = h+ 1, ∀t ∈ T (2b)

2) Energy Constraints: For the the upper reservoir, detailed
water balance constraint between consecutive time periods is
defined in (3a). The upper and lower bounds for water volume
are constrained in (3b). A trivial non-negative constraint for
water spillage is shown in (3c).

vr,t = vr,t−1 −
∑

h∈Hr

qg
h,t ·∆t+

∑
h∈Hr

qp
h,t ·∆t

+q̂infl
r,t ·∆t− q̂outfl

r,t ·∆t− sr,t ∀t ∈ T (3a)

V r ≤ vr,t ≤ V r ∀t ∈ T (3b)
sr,t ≥ 0 ∀t ∈ T (3c)
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3) Input-Output Curve Constraints: The input-output curve
describes the relations of generating/pumping power, flow rate,
and reservoir volume. Abstract equations for generating and
pumping modes are represented in (4a) and (4b), respectively.
The pumping power is assumed to be a fixed value when
a fixed-speed PSH unit is operating in the pumping mode.
Thus, the flow rate is modeled as a function of upper reservoir
volume in (4b). In the literature, both volume at the beginning
and end of time period t (i.e., vr,t−1 and vr,t, respectively)
have been used to estimate the volume in time period t. We
use vr,t−1 in this work.

pg
h,t = ϕg

h(qg
h,t, vr,t−1) ∀h ∈ Hr, ∀t ∈ T (4a)

qp
h,t = ϕp

h(vr,t−1) ∀h ∈ Hr, ∀t ∈ T (4b)

Convex hull approximations for the conventional hydro
input-output curves were proposed in [21]. Note that approach
in fact results in a convex relaxation of the original input-
output curve (i.e., the curve is expanded to a larger feasible
region as shown in Fig. 1b). In this work, we propose a
hypograph relaxation, which is conceptually shown in Fig.
1d. Without loss of generality, the relaxed form is expressed
in (5a) and (5b) with the assumptions ψg

h(qg
h,t, vr,t−1) ≤

ϕg
h(qg

h,t, vr,t−1), ψp
h(vr,t−1) ≤ ϕp

h(vr,t−1), ∀h ∈ Hr, ∀t ∈ T .
Note the relaxed feasible region does not necessarily have to
be convex. Fig. 1d illustrates an example in which the relaxed
feasible region (union of red and purple shadowed areas) is
not convex.

ψg
h(qg

h,t, vr,t−1) ≤ pg
h,t ≤ ϕ

g
h(qg

h,t, vr,t−1)

∀h ∈ Hr, ∀t ∈ T (5a)
ψp
h(vr,t−1) ≤ qp

h,t ≤ ϕ
p
h(vr,t−1) ∀h ∈ Hr, ∀t ∈ T (5b)

4) The Whole Problem Formulation: From PSH owners’
perspective, a profit maximization formulation is presented in
(6) given predicted locational marginal price (LMP) λ̂h,t. A
value-of-water term is defined in the objective function (8) to
assess the future profit under different levels of end volume
vr,Nt

, which can be obtained through methods in [27], [28].
The value-of-water function vowr(·) is monotonically non-
decreasing, as more ending volume would result in no less
future profit. With the input-output curve in (4) relaxed to
its hypograph (or subset of its hypograph) in (5), the relaxed
formulation is shown in (7).

max objPSH (6a)
s.t. (1), (2), (3), (4) (6b)

max objPSHr (7a)
s.t. (1), (2), (3), (5) (7b)

where,

objPSH (PSHr) =
∑

t∈T

∑
h∈Hr

(
λ̂h,t · ph,t − cg

h(pg
h,t, u

g
h,t)

−cp
h(pp

h,t, u
p
h,t)
)

+ vowr(vr,Nt
) (8)

For this profit maximization model, it’s not clear whether
the optimal solution from the relaxed formulation falls on the
original input-output curve. We provide sufficient conditions
for exact hypograph relaxation in subsection II-B.

B. Sufficient Conditions for Exact Hypograph Relaxation

The hypograph relaxation in (7) has the following property.
Property: If conditions 1 and 2 are satisfied, the optimization
problem (7), in which input-output curves are relaxed through
hypograph relaxation, has the same objective values with the
corresponding unrelaxed problems in (6).
Condition 1: function pg

h = ϕg
h(qg

h, vr) is monotonically non-
decreasing on both qg

h and vr.
Condition 2: function qp

h = ϕp
h(vr) is monotonically non-

increasing on vr; and
∑

h∈Hr

[
ϕp
h(v

(1)
r ) − ϕp

h(v
(2)
r )
]
· ∆t ≤

v
(2)
r − v

(1)
r is satisfied for any v

(1)
r , v(2)r in their respective

bounds and v(1)r < v
(2)
r .

We provide an outlined proof here, which contains the
solution recovery steps. More details in the appendix complete
the proof.

Proof. We prove the property through contradiction. Sup-
pose the proposed property is not true, the optimal objective
value from the hypograph relaxed problem in (7) is strictly
larger than that from the unrelaxed problem in (6), i.e.,
obj∗PSH < obj∗PSHr. Thus, there exists a set of optimal PSH
schedule from the relaxed formulation that does not fall on
the input-output curve, which means at least one of RHS
inequalities strictly hold in (5)1. Let the optimal solution from
the relaxed formulation (7) be ug∗

h,t, p
g∗
h,t, q

g∗
h,t, u

p∗
h,t, p

p∗
h,t, q

p∗
h,t,

v∗r,t. Based on the solution of the relaxed formulation, we
perform the following steps to generate another solution.

Step 1, set initial value t = 1. Define v∗r,0 = v∗∗r,0 = vr,0.
Step 2, let ug∗∗

h,t = ug∗
h,t, p

g∗∗
h,t = pg∗

h,t. When ug∗
h,t = 1, check

whether (qg∗
h,t, v

∗∗
r,t−1, pg∗

h,t) satisfies pg∗
h,t = ϕg

h(qg∗
h,t, v

∗∗
r,t−1).

If yes, let qg∗∗
h,t = qg∗

h,t; otherwise, get the smallest qg∗∗
h,t from

solving pg∗∗
h,t = ϕg

h(qg
h,t, v

∗∗
r,t−1). When ug∗

h,t = 0, let pg∗∗
h,t = 0.

Step 3, let up∗∗
h,t = up∗

h,t, p
p∗∗
h,t = pp∗

h,t. When up∗
h,t = 1, check

whether (v∗∗r,t−1, qp∗
h,t) satisfies qp∗

h,t = ϕp
h(v∗∗r,t−1). If yes, let

qp∗∗
h,t = qp∗

h,t; otherwise, let qp∗∗
h,t = ϕp

h(v∗∗r,t−1). When up∗
h,t = 0,

let qp∗∗
h,t = 0.

Step 4, calculate v∗∗r,t as shown in (9) by using updated qg∗∗
h,t

and qp∗∗
h,t .

v∗∗r,t = v∗∗r,t−1 −
∑

h∈Hr

qg∗∗
h,t ·∆t+

∑
h∈Hr

qp∗∗
h,t ·∆t

+q̂infl
r,t ·∆t− q̂outfl

r,t ·∆t− s∗∗r,t (9)

where,

s∗∗r,t = max

{
v∗∗r,t−1 −

∑
h∈Hr

qg∗∗
h,t ·∆t+

∑
h∈Hr

qp∗∗
h,t ·∆t

+q̂infl
r,t ·∆t− q̂outfl

r,t ·∆t− V r, 0

}
(10)

Step 5, if t < Nt, t ← t + 1, go to Step 2; otherwise,
terminate.

In terms of the constraints, it can be easily verified that the
generated solution ug∗∗

h,t , pg∗∗
h,t , qg∗∗

h,t , up∗∗
h,t , pp∗∗

h,t , qp∗∗
h,t , v∗∗r,t satisfy

the constraints for PSH in (1), (2), and (3). Importantly, the
PSH schedule generation process in Steps 2 and 3 guarantees

1Because if all the RHS inequalities in (5) hold with equalities, the
solution from the relaxed formulation is also a feasible solution for the
unrelaxed formulation. This contradicts that the objective values from the
two formulations are different.
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that all the RHS inequalities in (5) hold with equalities, i.e.,
pg∗∗
h,t = ϕg

h(qg∗∗
h,t , v

∗∗
r,t−1) and qp∗∗

h,t = ϕp
h(v∗∗r,t−1). This means

the generated PSH schedule falls on the input-output curve.
All the constraints in the profit maximization problem (6) are
satisfied.

In terms of the objective value, the pg
h,t, p

p
h,t, u

g
h,t and

up
h,t related cost terms for PSH in both (6a) and (7a) (see

(8) for detail) keep the same. Thus, only the value-of-water
term might change. We assert (11) is satisfied, for which the
detailed proof is provided in the appendix.

v∗∗r,t ≥ v∗r,t ∀t ∈ T (11)

Considering the value-of-water function vowr(·) is monoton-
ically non-decreasing, the value-of-water term in (8), which
is related to the ending volume, does not decrease for the
generated solution, i.e., vowr(v∗∗r,Nt

) ≥ vowr(v∗r,Nt
). Thus,

the generated solution results in an equal or better objective
value, i.e., obj∗∗PSHr ≥ obj∗PSHr. Given the generated solution is
also a feasible solution for the unrelaxed formulation in (6),
we have obj∗PSH ≥ obj∗∗PSHr. Consequently, the optimal objective
value from the unrelaxed formulation in (6) is larger greater
than or equal to that from the relaxed formulation in (7), i.e.,
obj∗PSH ≥ obj∗PSHr. This contradicts obj∗PSH < obj∗PSHr, which
was obtained from our assumption previously.

We have proved the proposed property. Under the given con-
ditions, as the optimal objective values from the relaxed and
unrelaxed formulations keep the same, the optimal solutions
from unrelaxed formulations (6) are also optimal solutions for
relaxed formulations (7). Note the reverse of this assertion may
not hold, as the PSH schedule from the relaxed formulation
(7) does not necessarily fall on the input-output curves in (4) if
the possibility of multiple solutions is considered. However, an
exact PSH solution that satisfies (4) can be recovered through
Steps 1-5 in the proof.
Remark 1: The property still holds if symmetry breaking
constraints in (2) are not incorporated.
Remark 2: For ISO’s market clearing problem, if constraints
for PSH units are modeled as in (1), (2), (3), (5), and the
PSH related term in the objective function is

∑
t∈T

∑
h∈Hr[

cg
h(pg

h,t, u
g
h,t)+cp

h(pp
h,t, u

p
h,t)
]
−vowr(vr,Nt

) for each r ∈ R,
the proposed property still holds, which can be proved in a
similar way through contradiction.

C. Discussion on the Conditions

According to the law of conservation of energy, a larger vol-
ume of water in the upper reservoir has no smaller gravitational
potential energy, which leads to no less generated power given
a fixed flow rate. Likewise, power output doesn’t decrease as
flow rate increases given fixed volume. Thus, Condition 1 is
reasonable for input-output curves in the generating mode.

For the pumping mode, given fixed pumping power, pump-
ing flow rate does not increase as the water head increases,
which is also according to the law of conservation of energy.
So, the monotonicity condition in Condition 2 is satisfied for
general input-output curves in the pumping mode. We check
the condition

∑
h∈Hr

[
ϕp
h(v

(1)
r )−ϕp

h(v
(2)
r )
]
·∆t ≤ v(2)r −v(1)r

with data from Ludington PSH station. As a fixed speed PSH

station with six identical units, the condition is equivalent to
(12) by defining n as the number of online units.

(v
(2)
r − v(1)r )

/(
ϕp(v

(1)
r )− ϕp(v

(2)
r )
)
≥ n ·∆t

∀v(1)r , v
(2)
r ∈ [V r, V r], v

(1)
r < v

(2)
r (12)

With discrete input-output curve data for the pumping
mode from Ludington PSH station, we can calculate
min

v
(1)
r ,v

(2)
r ∈[V r,V r],v

(1)
r <v

(2)
r

LHS of (12) = 228.8 hours,
which is significantly grater than 6 hours, the maximum RHS
of (12) for ∆t = 1 hour. In this case, the number of units
that share this reservoir can be up to 228 without breaking
the condition. Moreover, a smaller time interval ∆t in the
optimization model would make Condition 2 more solid.

III. DISJUNCTIVE CONVEX HULL MODEL AND ACD
BASED INPUT-OUTPUT CURVE PARTITION

The hypograph relaxation of an input-output curve is proved
to be exact in terms of the objective value, and can be
recovered to an exact solution (if applicable) for PSH under
given conditions. As convexity is not necessarily required
in the hypograph relaxation approach, the hypograph is ap-
proximated for non-convex input-output curves through a
disjunctive convex hull modeling. The detailed formulation
and ACD based partition algorithms are offered in this section.

A. Disjunctive Convex Hull

1) Constraints for the Generating Mode: Given a partition
on the (qg

h, vr) plane, the input-output curve can be divided
into multiple components. These components are approxi-
mated by their convex hull within acceptable tolerance. Then
the hypograph for the generating mode in (5a) is constructed
by the union of all the convex hulls, as shown in (13). The
convex hull for each component i is modeled in (13a). Equa-
tion (13b) guarantees no more than one component is selected.
A binary-coded mapping between the binary variables ζg

h,t,`

and the selection variables φg
h,t,i is established in (13c). Note

φg
h,t,i are defined as continuous variables. By summing up

of the ancillary variables in all components, the generating
power and flow rate are obtained, as shown in (13d) and (13e),
respectively. Binary variables are declared in (13f).

γpg
h,i,kp

g
h,t,i + γqg

h,i,kq
g
h,t,i + γvg

h,i,kv
g
h,t−1,i ≤ γ0h,i,kφ

g
h,t,i

∀h ∈ Hr, ∀t ∈ T , ∀i ∈ Ig
h, ∀k ∈ Ki (13a)∑

i∈Ig
h

φg
h,t,i = ug

h,t ∀h ∈ Hr, ∀t ∈ T (13b)∑
ĩ∈{ĩ:̃i∈Ig

h ,̃i 6=i}
φg
h,t,̃i
≤
∑

`∈{`:Bi,`=0}
ζg
h,t,`+∑

`∈{`:Bi,`=1}
(1− ζg

h,t,`) ∀h ∈ Hr, ∀t ∈ T , ∀i ∈ Ig
h(13c)

pg
h,t =

∑
i∈Ig

h

pg
h,t,i ∀h ∈ Hr, ∀t ∈ T(13d)

qg
h,t =

∑
i∈Ig

h

qg
h,t,i ∀h ∈ Hr, ∀t ∈ T (13e)

ζg
h,t,` ∈ {0, 1} ∀h ∈ Hr, ∀t ∈ T , ∀` ∈ Lg

h (13f)
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2) Constraints for the Pumping Mode: Analogously, the
hypograph for the pumping mode in (5b) is constructed by
(14). Note for fixed-speed PSH, as the pumping power is fixed,
the flow rate is only related to the volume of water in the upper
reservoir. Thus, (14) is a two-dimensional formulation.

τ qp
h,i,kq

p
h,t,i + τ vp

h,i,kv
p
h,t−1,i ≤ τ0h,i,kφ

p
h,t,i

∀h ∈ Hr, ∀t ∈ T , ∀i ∈ Ip
h, ∀k ∈ Ki (14a)∑

i∈Ip
h

φp
h,t,i = up

h,t ∀h ∈ Hr, ∀t ∈ T (14b)∑
ĩ∈{ĩ:̃i∈Ip

h ,̃i 6=i}
φp
h,t,̃i
≤
∑

`∈{`:Bi,`=0}
ζp
h,t,`+∑

`∈{`:Bi,`=1}
(1− ζp

h,t,`) ∀h ∈ Hr, ∀t ∈ T , ∀i ∈ Ip
h(14c)

qp
h,t =

∑
i∈Ip

h

qp
h,t,i ∀h ∈ Hr, ∀t ∈ T (14d)

ζp
h,t,` ∈ {0, 1} ∀h ∈ Hr, ∀t ∈ T , ∀` ∈ Lp

h (14e)

3) Other Constraints: As the modeling for pumping, gen-
erating, and idle modes share the same upper reservoir volume
variable, by summing up volume variables that are related
to all the components, we have an equation to calculate the
volume, as shown in (15a). Bound constraints for volume
variable that corresponds to the idle-mode component are
presented in (15b).

vr,t =
∑

i∈Ig
h

vg
h,t,i +

∑
i∈Ip

h

vp
h,t,i + vi

h,t

∀h ∈ Hr, ∀t ∈ T (15a)
V r · (1− u

g
h,t − u

p
h,t) ≤ vi

h,t ≤ V r · (1− ug
h,t − u

p
h,t)

∀h ∈ Hr, ∀t ∈ T (15b)

When the generating mode is off, φg
h,t,i = 0 holds according

to (13b). Then constraints (13c) is always satisfied for any
values of ζg

h,t,`. We reduce the number of ζg
h,t,` combinations

in this situation by incorporating (16a). The corresponding
constraints for the pumping mode are shown in (16b).

ζg
h,t,` ≤ u

g
h,t ∀h ∈ Hr, ∀t ∈ T , ∀` ∈ Lg

h (16a)

ζp
h,t,` ≤ u

p
h,t ∀h ∈ Hr, ∀t ∈ T , ∀` ∈ Lp

h (16b)

B. ACD based Partition Algorithm: 3-Dimensional

In this subsection, we elaborate on a three-dimensional
approximate convex decomposition (ACD) based partition
algorithm that is customized for PSH input-output curves. Note
subscripts h and t for unit and time indices, respectively, are
eliminated for convenience.

1) Dual Graph Construction: For a given mesh M that
represents an input-output curve, its dual graph M∗ is first
generated. Nodes of M∗ correspond to faces of M . A link
exists for any two nodes in M∗ if the respective faces in M
share a common edge2. Detailed examples can be further found
in [26].

2To distinguish the terms vertex, edge, face in geometry (e.g., in mesh M ),
and the terms vertex, edge in graph (e.g., in dual graph M∗), we use node and
link to represent vertex and edge, respectively, which are also conventionally
used in graph theory. However, we still preserve edge in half-edge collapses
of a graph later in this paper.

(a) (b) (c)

Fig. 2. A conceptual illustration of the merging process: (a) original mesh,
(b) mesh after the first merging, (c) mesh after the second merging

2) Nodes Merge: A sequential merging process is per-
formed until a predefined stopping criterion is reached. In
each iteration, we define merge action on link l as a half-
edge collapses [29] for nodes n1(l) and n2(l) at both ends of
l. In detail, nodes n1(l) and n2(l) are merged to a new node
n12, link l is canceled, and other links that are connected to
either n1(l) or n2(l) are reconnected to the new merged vertex
n12. As an illustrative example, the mesh in Fig. 2a is finally
merged to two components as in Fig. 2c under a predefined
tolerance, according to the weight of links in the dual graph.

The weight and related metric definitions are important to
high quality node-merging choices in each iteration, and the
stopping criteria of the algorithm. Three metrics for merge
actions are first introduced. With these metrics, weight is then
defined for each link in the dual graph.

Shape metric shpg
l : We first employ the shape metric

defined in [26] to guide the generation of compact clusters. As
shown in (17a), shape metric shpg

l is defined for each link l to
assess the cluster compactness after a merge action happens
on l.

shpg
l = ρ2l /(4π · σl) (17a)

where ρl and σl are perimeter and area of the mesh Ml,
respectively, which can be calculated by assuming a merge
action happens on l.

Error metric in generating power errg
l : In our specific

problem, we use new metrics to quantify the performance in
terms of convex estimation error. Taking the generating mode
as an example, we note our input-output curve is a function
in the form of (qg, v) → pg, i.e., exact one power generation
level pg corresponds to each (qg, v) pair. Thus, different from
general three dimensional meshes, a partition on the (qg, v)
plane works for our input-output curve. As we mainly concern
estimation errors on the pg axis, convex estimation error metric
errg

l is defined to assess how good the upper convex hull
approximation is for a merge action on l. As shown in (17b),
errg

l is the pg-axis distance between the far most point and the
upper convex hull after a merge action happening on l. As an
input parameter for the algorithm, tolg represents estimation
error threshold. Given this, errg

l ≤ tolg should be guaranteed
for a merge action on l.

errg
l = max

j∈Jl

[
min

k∈Kupper
l

(
γ0l,k − γ

qg
l,kq̂

g(j) − γvg
l,kv̂

g(j)
)/

γpg
l,k

−p̂g(j)
]

(17b)

where, Jl is the set of points
(
q̂g(j), v̂g(j), p̂g(j)

)
for the mesh

Ml obtained from the merge action on l. Kupper
l is the set of
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linear inequality constraints in upper convex hull of the mesh
Ml. Note γpg

l,k is nonzero for constraints in upper convex hull
Kupper

l . Coefficients γ0l,k, γpg
l,k, γqg

l,k, and γvg
l,k are defined in a

similar manner to that in (13a).
Error metric in (qg, v) plane cavg

l : In addition, to avoid
large errors on feasible region description in the (qg, v) plane,
a concavity metric cavg

l is defined in (17c) for a merge action
on l, which measures how far it is between the boundary of
projected mesh and its convex hull. Given a tolerance tolcav g

for concavity in the (qg, v) plane, cavg
l ≤ tolcav g is taken as a

hard requirement in the merging process.

cavg
l = max

j∈{j∈Jl|(q̂g(j),v̂g(j))∈Bl}
dist

(
(q̂g(j), v̂g(j)),Bconv

l

)
(17c)

where, by defining projqv(·) as an orthogonal projection of a
three-dimensional mesh into the (qg, v) plane, we denote the
boundary of projected Ml as Bl in (17d). The the convex hull
boundary of projected points are defined as Bconv

l in (17e).
dist

(
(q̂g(j), v̂g(j)),Bconv

l

)
is the minimum Euclidean distance

from point (q̂g(j), v̂g(j)) to convex hull boundary Bconv
l .

Bl = ∂ projqv(Ml) (17d)

Bconv
l = ∂ conv

({
(q̂g(j), v̂g(j)) | j ∈ Jl

})
(17e)

Weight definition: Considering these metrics, a weight wg
l

to finally evaluate the performance for the merge action on
l is defined in (18a). To avoid merge actions that may cause
predefined thresholds exceeded, in comparison to the weight
in [26], we add two indicator-function terms to the weight
definition. The indicator function [30, p. 218] ind(·), as defined
in (18c), can be understood as a penalty defined to avoid
violating user-defined tolerance. The choice of α in (18b)
ensures the shape term is significantly less than the estimation-
error term for disk-shaped meshes at the late stage of the
algorithm [26].

wg
l = errg

l + α · shpg
l

+ ind(errg
l ≤ tolg) + ind(cavg

l ≤ tolcav g) (18a)

where,

α = tolg/10 (18b)

ind(condition) =

{
0 if condition is satisfied
+ inf otherwise

(18c)

3) The Whole Algorithm: Finally, the whole three-
dimensional algorithm is summarized in Algorithm 1. After
obtaining the final dual graph from this algorithm, hyperplane
constraints are generated for convex hull in each node by using
the on-the-shelf tool in [31].

C. ACD based Partition Algorithm: 2-Dimensional

For the pumping mode of fixed-speed PSH, input-output
curves need a two-dimensional partition algorithm. In contrast
to employing a merge-based algorithm for three-dimensional
cases, we use a divide-and-conquer strategy in [24], as its
performance is guaranteed theoretically according to [24]. In
our application, analogous to errg for the generating mode, a
convex approximation error metric errp for the pumping mode

Algorithm 1: ACD 3dim(M , tolg, tolcav g)

Initialize iteration counter niter ← 1;
Generate dual graph M∗ for a given mesh M ;
while minl w

g
l < + inf do

Find the link l̂ with smallest weight wg
l̂
;

Perform half-edge collapses on the nodes at
two-ends of l̂;
niter ← niter + 1;
Update weight metric wg

l by using (18a);
end

Algorithm 2: ACD 2dim(P , tolp)

if errp(P ) < tolp then
Add P to the component list, and return;

else
Find point j∗ that has maximum distance in (19);
P1 ← {(q̂p(j), v̂p(j)) ∈ P, q̂p(j) ≤ q̂p(j∗)};
P2 ← {(q̂p(j), v̂p(j)) ∈ P, q̂p(j) ≥ q̂p(j∗)};
for i = 1 to 2 do

ACD 2dim(Pi, tolp);
end

end

is defined in (19), which is the maximum distance between
points and the convex hull in the qp-axis.

errp
i = max

j∈Ji

[
min

k∈Kupper
i

(
τ0i,k − τ

vp
i,kv̂

p(j)
)/

τ qp
i,k − q̂

p(j)
]

(19)

where, Ji is the set of nodes
(
q̂p(j), v̂p(j)

)
of i-th polygon.

Kupper
i is the set of linear inequality constraints in upper convex

hull of i-th polygon. Coefficients τ0i,k, τ qp
i,k, and τ vp

i,k are defined
in a similar manner to that in (14a).

The algorithm is defined recursively as shown in Algorithm
2, which keeps dividing polygons until the tolerance criterion
is satisfied. As the pumping input-output curve is a function
of one variable, the division strategy could be simplified in
comparison to the version in [24]. We divide a polygon with
inequalities qp ≤ q̂p(j∗) and qp ≥ q̂p(j∗), where j∗ is the
index for point that has maximum distance in (19). In our
implementation, hyperplane constraints are generated by using
tool in [31].

IV. A CASE STUDY OF THE LUDINGTON PSH PLANT

We tested our proposed approach by using a real-world Lud-
ington PSH station case, in which the PSH profit maximization
problem is addressed to assess the relaxation exactness and
other numerical performances of our proposed approach. All
the MILP problems were built with YALMIP [32] and solved
by Gurobi solver 9.0.3 [33] on a computer with Intel Core
i7-9700 CPU and 64 GB RAM.

A. Case Settings

Located in Michigan, the Ludington PSH power plant is
the fifth largest PSH station in the world in terms of installed
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TABLE I
PARAMETERS FOR LUDINGTON PSH UNITS AND UPPER RESERVOIR

P
g

P g P
p
= P p V

398 MW 250 MW 362 MW 56935 ac ft

Q
g

Qg Q
p

Qp

15385 ft3·s−1 9488 ft3·s−1 13572 ft3·s−1 11484 ft3·s−1

power capacity [34]. It has an upper reservoir with 82,860 ac
ft total capacity (which includes non-active capacity), a lower
reservoir of Lake Michigan, and six PSH units. For each PSH
unit, a Francis pump turbine with 362 MW installed capacity
is equipped. We use realistic data for Ludington PSH units
in our numerical experiments to test our proposed approach.
The six units in Ludington PSH power plant are assumed
to have identical parameters, which are listed in Table I. As
shown in Fig. 3, the input-output curves of PSH units, which
were obtained by fitting field test data, indicate variable energy
conversion efficiencies at different operating points. Moreover,
we note the maximum power bound also increases as the water
volume in the upper reservoir increases. Thus, the characters
of both variable efficiency and head-dependent power bound
are considered in our input-output curve modeling.

In our numerical tests, day-head profit maximization prob-
lems from the PSH owners’ perspective were solved by using
the proposed relaxed formulation in (7). The optimization
horizon is 24 hours, and the resolution is 1 hour. Historical
LMP profiles from MISO day-ahead market [35] are used in
our tests. The gaps for the MILP problems are set as 0.5%.

B. Relaxation Exactness

The input-output curve is modeled using our proposed
disjunctive convex hull formulation with ACD-based partition
method. As shown in Fig. 3b, for tolerance tolg = 2.5, the
generating-mode input-output curve is divided by four blocks,
and the curve corresponding to each block is modeled by
a convex hull. In Fig. 3c, as the input-output curve for the
pumping mode is close to a convex curve, it is modeled using
only one convex hull block.

In the case with a tolerance tolg = 2.5 and a typical LMP
profile, an optimal solution and the convex hull approximation
are shown in Fig. 3b, in which the red stars represent the
optimal solution. As indicated, since all red stars fall on the
blockwise-convexified input-output curve, the proposed dis-
junctive convex hull model is an exact relaxation for the curve
in this test, which is checked numerically in the following.

Given an optimal solution, for each unit h and each time
period t, relaxation exactness indices are defined to check if
the relaxation is exact, in (20a) and (20b) for generating and
pumping modes, respectively. Taking the generating mode as
an example, as the optimal solution is a feasible solution, the
difference between RHS and LHS of (13a) is non-negative,
thus, REIg

h,t ≥ 0. If the inequality in (13a) holds with equality
for any plane in the upper convex hull of Kĩh,t

, which means
the optimal solution falls on the upper convex hull, we have
REIg

h,t = 0. The same rule applies to the pumping mode. Con-
sequently, the condition

∑
∀h∈Hr,∀t∈T (REIg

h,t + REIp
h,t) = 0

0 5 10 15 20 25
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1000

2000
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(a)

(b)

(c)

Fig. 3. Solution for PSH owners’ profit maximization problems: (a) dispatch
of PSH plant, (b) solution for the generating mode, and (c) solution for the
pumping mode. Overlaps occur in sub-figure (a).

can be used for a plant to identify if a given optimal solution
falls on the upper convex hull. In our test case, this condition
is satisfied under 10−8 level numerical tolerance, thus the
relaxation is exact. The case shown in Fig. 3 is used for
illustration purposes. We also check all the cases shown later
in Tables III and IV, and the relaxations are all exact.

REIg
h,t = min

∀k∈Kupper
ĩh,t

[(
γ0
h,̃ih,t,k

− γqg
h,̃ih,t,k

qg*
h,t,̃ih,t

−

γvg
h,̃ih,t,k

vg*
h,t−1,̃ih,t

)/
γpg
h,̃ih,t,k

− pg*
h,t,̃ih,t

]
∀h ∈ Hr, ∀t ∈ T (20a)

REIp
h,t = min

∀k∈Kupper
îh,t

[(
τ0
h,̂ih,t,k

− τ vp
h,̂ih,t,k

vp*
h,t−1,̂ih,t

)/
τ qp
h,̂ih,t,k

− qp*
h,t,̂ih,t

]
∀h ∈ Hr, ∀t ∈ T (20b)

where, ĩh,t in (20a) and îh,t in (20b) are the indices i such
that φg

h,t,i = 1 and φp
h,t,i = 1, respectively.
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Input-output curve modeling methods: sub-figures (a), (b), and (c) are disjunctive convex modeling for tolg = 10, 2.5, 1.5, respectively; sub-figures
(d), (e), and (f) are piece-wise linear modeling for n = 5, 10, 20, respectively

TABLE II
MILP PROBLEM SIZE COMPARISON

model # of variables # of constraints

integer1 binary continuous equality inequality

DCH tolg = 10 (CH)1 0 288 2064 1200 72326
DCH tolg = 2.5 0 576 3792 1200 88886
DCH tolg = 1.5 0 720 5520 1200 99830
PWL n = 5 2 864 864 8688 1200 13430
PWL n = 10 1152 864 23088 1200 28406
PWL n = 20 1440 864 73488 1200 79382

1 Here “integer” represents the number of general integer variables, which does not
include the number of binary variables.

2 The input parameter tolg = 10 is larger than the resultant maximum error 5.878.
Thus, only one component (i.e., the convex hull) is finally obtained. It is equivalent to
a CH method.

3 For PWL method, n = 5 means 5 × 5-pieces for the generating input-output curve.
The same applies for n = 10 and n = 20 cases.

C. Performance Comparison

To facilitate a numerical performance comparison, the input-
output curve is approximated by three methods: piece-wise
linear approximation method (PWL), convex hull approxima-
tion method (CH), and the proposed disjunctive convex hull
approximation method (DCH). PWL method is implemented
by a zig-zag integer formulation [20]. The detailed implemen-
tation for the ZZI formulation is provided in the supplementary
material [36]. In Fig. 4, sub-figures (a), (b), and (c) show
how our proposed disjunctive convex hull approach models
the input-output curve under different tolerance settings; while
sub-figures (d), (e), and (f) illustrate the piece-wise linear
modeling under different number of pieces. Note given a large
enough tolg, our partition method would come out with only
one component, which is equivalent to the traditional CH

TABLE III
SOLUTION TIME COMPARISON UNDER DIFFERENT LMP PROFILES

model time under LMPs (s)

LMP 1 LMP 2 LMP 3 LMP 4

DCH tolg = 10 (CH) 240.6 163.5 59.5 159.0
DCH tolg = 2.5 1083.3 1159.3 110.8 383.4
DCH tolg = 1.5 1237.8 1684.9 227.4 554.7

PWL n = 5 > 7200 > 7200 1782.3 972.1
PWL n = 10 > 7200 > 7200 4558.5 965.7
PWL n = 20 > 7200 > 7200 > 7200 > 7200

model LMP 5 LMP 6 LMP 7 LMP 8

DCH tolg = 10 (CH) 67.5 8.5 127.6 148.2
DCH tolg = 2.5 514.6 287.1 611.3 843.0
DCH tolg = 1.5 1679.0 658.6 2094.3 1567.6

PWL n = 5 > 7200 > 7200 > 7200 4706.7
PWL n = 10 > 7200 > 7200 > 7200 > 7200
PWL n = 20 > 7200 > 7200 > 7200 > 7200

approximation method. As shown in Fig. 4a, DCH approach
with tolg = 10 in this case study has only one component,
thus it can be treated as a CH method implementation.

We tested eight daily cases with distinctive LMP settings.
The detailed data can be found in the supplementary material
[36]. Table II shows a comparison of MILP problem size
for different methods. Given only input parameters differ in
these cases, the problem size for the eight cases are the same.
As indicated, different case settings, such as the number of
pieces in PWL and the tolerance in CH, affect the number of
general-integer and binary variables. The PWL method with
ZZI formulation has more general-integer and binary variables
than the DCH method. As a result, in Table III, most of the
PWL cases didn’t converge in 2 hours even for those 5 × 5-
piece cases. The solution time of DCH cases increases as the
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TABLE IV
SENSITIVITY ANALYSIS FOR INITIAL AVAILABLE VOLUME PERCENTAGES

OF THE UPPER RESERVOIR (WITH LMP 7)

model time under initial available volumes in percentage (s)

25% 37.5% 50% 62.5% 75%

DCH tolg = 10 (CH) 126.6 169.3 127.6 134.9 153.9
DCH tolg = 2.5 1464.3 2287.8 611.3 2875.5 1644.1
DCH tolg = 1.5 3399.0 > 72001 2094.3 6048.4 5533.4

PWL n = 5 > 7200 > 7200 > 7200 > 7200 > 7200
PWL n = 10 > 7200 > 7200 > 7200 > 7200 > 7200
PWL n = 20 > 7200 > 7200 > 7200 > 7200 > 7200

1 Although this case doesn’t converge to 0.5% gap, an obtained feasible solution
with 0.54% gap is also acceptable to use. For the same case, the PWL models
offer solutions with 1.93%, 2.53%, and 5.16% gaps for 5 × 5, 10 × 10, and
20× 20-piece settings, respectively.

tolerance tolg decreases. Compared with the PWL method, our
DCH approach can enable solution time accelerations under
the same LMP setting. Sensitivity analysis for various initial
volume levels is also conducted with LMP 7, which is the most
time consuming case in Table III. We define initial available
volume in percentage as (vr,0 − V r) /

(
V r − V r

)
to represent

the initial volume status in the upper reservoir. Results shown
in Table IV also verify the advantage of our approach in
solution time.

To assess the approximation accuracy, we estimate the
empirical cumulative distribution function (CDF) of modeling
error for the generating input-output curve based on uniform
sampling in the (qg, v) space. Fig. 5 shows a comparison
of empirical CDFs for CH, DCH, and PWL methods. As
indicated, DCH cases with tolg = 2.5 or 1.5 introduce
less estimation error than the CH case does. A summary of
maximum estimation errors for these methods is shown in
Table V. As indicated, the estimation error for both DCH
and PWL methods can be reduced with larger tolerance and
a larger number of pieces, respectively. The CH approach,
i.e. DCH approach with tolg = 10, has a relatively large
error. Taking the solution time into account, the PWL method
didn’t converge in 2 hours even for most 5×5-piece cases, as

0 2 4 6 8 10
0

0.5

1

CH

DCH (tol
g
 = 2.5)

DCH (tol
g
 = 1.5)

PWL (n = 5)

PWL (n = 10)

PWL (n = 20)

Fig. 5. Empirical CDF Comparison

TABLE V
MAXIMUM APPROXIMATION ERROR COMPARISON

DCH PWL

tolg # of comp. max error (MW) n max error (MW)

10 (CH) ∗ 1 5.878 5 9.510
2.5 4 2.496 10 4.625
1.5 7 1.267 20 2.296

0 2 4 6 8 10
0

0.5

1

CH (  = 1)

DCH (tol
g
 = 2.5,  = 1)

DCH (tol
g
 = 1.5,  = 1)

CH (  = 0.994)

DCH (tol
g
 = 2.5,  = 0.999)

DCH (tol
g
 = 1.5,  = 0.999)

Fig. 6. Effect of optimal regression term α on empirical CDF

shown in Table III. Our proposed DCH method has better
performance in solution time than the PWL method under
similar estimation error settings.

Both the DCH and CH methods can incorporate the re-
gression term proposed in [21] to adjust their estimation
errors, in which optimal regression term α can be obtained
by using optimization techniques. The regression term α is
selected in a range of (0, 1], specially, case with α = 1
is equivalent to that without incorporating regression term
(see [21] for detail). We use an enumeration method with
resolution 0.001 for α to find the optimal α values for the
DCH and CH cases. The performance comparison is shown
in Fig. 6. Overall, the regression term in [21] can improve the
performance of both CH and DCH methods. The CH method
under optimal regression term can not outperform the DCH
method (tolg = 2.5 or 1.5) without regression terms.

V. CONCLUSION

This paper proposes a disjunctive convex hull model to
approximate the input-output curves for PSH units. Under
our proposed sufficient conditions, the exactness of hypograph
relaxation on PSH input-output model is theoretically proved
and numerically verified. Through numerical tests on a real-
world PSH plant, the proposed method is shown to achieve an
acceptable estimation error in comparison to the conventional
convex hull approach, and significantly shorter solution time in
comparison to the piece-wise linear approach. Accurate input-
output curve modeling would potentially encounter significant
computational challenges for large-scale electricity market
applications from ISOs’ perspective. Methodologies to address
it can be further explored. The proposed sufficient conditions
can be further verified if data for more PSH plants is available.

APPENDIX: PROOF OF THE ASSERTION IN (11)

Now we prove the assertion in (11) by using mathematical
induction.

For t = 0, given v∗∗r,t = v∗r,t = vr,0, the assertion in (11) is
satisfied.

For 1 ≤ t ≤ Nt, if v∗∗r,t−1 ≥ v∗r,t−1 holds, we need to prove
v∗∗r,t ≥ v∗r,t.

For units with ug∗
h,t = 1, given pg∗

h,t ≤ ϕg
h(qg∗

h,t, v
∗
r,t−1),

pg∗∗
h,t = ϕg

h(qg∗∗
h,t , v

∗∗
r,t−1), and pg∗∗

h,t = pg∗
h,t, we have

ϕg
h(qg∗∗

h,t , v
∗∗
r,t−1) ≤ ϕg

h(qg∗
h,t, v

∗
r,t−1). Moreover, we can get

ϕg
h(qg∗

h,t, v
∗
r,t−1) ≤ ϕg

h(qg∗
h,t, v

∗∗
r,t−1) from that ϕg

h(qg
h, vr) is

monotonically non-decreasing on vr in Condition 1. Thus, we
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have ϕg
h(qg∗∗

h,t , v
∗∗
r,t−1) ≤ ϕg

h(qg∗
h,t, v

∗∗
r,t−1). This further leads to

(A-1), under the condition ϕg
h(qg

h, vr) is monotonically non-
decreasing on qg

h, as well as the fact qg∗∗
h,t is the smallest value

obtained from pg∗∗
h,t = ϕg

h(qg
h,t, v

∗∗
r,t−1) in Step 2. For units with

ug∗
h,t = 0, (A-1) is trivially satisfied.

qg∗∗
h,t ≤ q

g∗
h,t (A-1)

Note
∑

h∈Hr

[
ϕp
h(v

(1)
r ) − ϕp

h(v
(2)
r )
]
· ∆t ≤ v

(2)
r − v(1)r in

Condition 2 can be extended from v
(1)
r < v

(2)
r to v(1)r ≤ v(2)r ,

as it trivially holds for v(1)r = v
(2)
r . Let v(1)r = v∗r,t−1 and

v
(2)
r = v∗∗r,t−1, we can get (A-2a).

v∗∗r,t−1 − v∗r,t−1 ≥
∑

h∈Hr

(
ϕp
h(v∗r,t−1)− ϕp

h(v∗∗r,t−1)
)
·∆t

(A-2a)
For units with up∗

h,t = 1, given qp∗
h,t ≤ ϕp

h(v∗r,t−1), and
qp∗∗
h,t = ϕp

h(v∗∗r,t−1) as indicated in Step 3, ϕp
h(v∗r,t−1) −

ϕp
h(v∗∗r,t−1) ≥ qp∗

h,t − qp∗∗
h,t . For units with up∗

h,t = 0, given
v∗∗r,t−1 ≥ v∗r,t−1 and the monotonically non-increasing prop-
erty of ϕp

h(vr), we have ϕp
h(v∗r,t−1) ≥ ϕp

h(v∗∗r,t−1). Thus,
ϕp
h(v∗r,t−1) − ϕp

h(v∗∗r,t−1) ≥ 0 = qp∗
h,t − qp∗∗

h,t . Consequently,
(A-2b) can be further obtained from (A-2a).

v∗∗r,t−1 ≥ v∗r,t−1 +
∑

h∈Hr

(qp∗
h,t − q

p∗∗
h,t ) ·∆t (A-2b)

From (A-1) and (A-2b), we have,

v∗∗r,t = v∗∗r,t−1 −
∑

h∈Hr

qg∗∗
h,t ·∆t+

∑
h∈Hr

qp∗∗
h,t ·∆t

+q̂infl
r,t ·∆t− q̂outfl

r,t ·∆t− s∗∗r,t (A-3a)

≥ v∗r,t−1 −
∑

h∈Hr

qg∗
h,t ·∆t+

∑
h∈Hr

qp∗
h,t ·∆t

+q̂infl
r,t ·∆t− q̂outfl

r,t ·∆t− s∗r,t + s∗r,t − s∗∗r,t (A-3b)
= v∗r,t + s∗r,t − s∗∗r,t (A-3c)

Then we can get v∗∗r,t+s∗∗r,t ≥ v∗r,t+s∗r,t. To further compare
v∗∗r,t and v∗r,t, there are two cases to discuss:

• Case 1, v∗∗r,t + s∗∗r,t ≤ V r. From (10), we have s∗∗r,t = 0.
So, v∗∗r,t = v∗∗r,t + s∗∗r,t ≥ v∗r,t + s∗r,t ≥ v∗r,t.

• Case 2, v∗∗r,t + s∗∗r,t > V r. From (10), we have s∗∗r,t =
v∗∗r,t−1−

∑
h∈Hr

qg∗
h,t ·∆t+

∑
h∈Hr

qp∗
h,t ·∆t+ q̂infl

r,t ·∆t−
q̂outfl
r,t ·∆t− V r, and v∗∗r,t = V r. So, v∗∗r,t = V r ≥ v∗r,t.

Thus, v∗∗r,t ≥ v∗r,t holds.
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