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Abstract—As the penetration of intermittent renewable energy
increases in bulk power systems, flexible generation resources,
such as quick-start gas units, become important tools for system
operators to address the power imbalance problem. To better
capture their flexibility, we proposed a two-stage distributionally
robust unit commitment framework with both regular and flexi-
ble generation resources, in which the unit commitment decisions
for flexible generation resources can be adjusted in the second
stage to accommodate the renewable energy intermittency. In
order to tackle this challenging two-stage distributionally robust
mixed-binary model, to which traditional separation algorithms
won’t apply, we designed a revised integer L-shaped algorithm
with lift-and-project cutting plane techniques. In comparison
to the traditional distributionally robust unit commitment, the
proposed approach can reduce the system cost through an
improved flexible resource quantification in the modeling.

Index Terms—Unit commitment, renewable energy uncer-
tainty, flexible generation resources, distributionally robust op-
timization, two-stage mixed-binary linear program, system flex-
ibility.

NOMENCLATURE

Indices and Sets
t, b, i Index for time periods, buses, and units/trans-

mission lines.
j Index for pieces in piece-wise approximation.
T ,B,L Set of time periods, buses, and transmission

lines.
W,D Set of renewable energy resources and loads.
Gr,Gf ,G Set of regular, flexible, and all generation re-

sources, i.e., G = Gr
⋃
Gf .

·b Set of devices · at bus b.
Parameters
Nt Number of time periods, i.e., Nt = |T |.
Di,t Power of load i in time period t.
SFb,i Shift factor that represents power flow change

on branch i due to power injection change at
bus b.

F i Capacity of transmission line i.
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SUi Start-up cost for unit i.
J Number of pieces in piece-wise approximation.
βji , γ

j
i Per-unit and constant cost terms for unit i in the

j-th piece of piecewise linear cost function.
RUi, RDi Upward/downward ramp rate limits for unit i.
RU i, RDi Start-up and shut-down ramp rate limits for unit

i.
P i, P i Minimum and maximum outputs for unit i.
UTi, DTi Minimum on and off time periods for unit i.

Decision Variables
ui,t Binary commitment status variable for unit i in

time period t.
vi,t Binary variable that indicates if unit i starts up

at the beginning of time period t.
φi,t Approximated piece-wise linear cost for unit i

in time period t.
pi,t Power output from unit i in time period t.
ϑ Ancillary variables for second-stage objective.

Symbols for Confidence Set
ξ, ξ̂ Real and empirical random variables for the

day-ahead forecast error of renewable power.
D Confidence set for day-ahead forecast error dis-

tributions of renewable energy resources.
P, P̂ True and empirical probability distributions for

random variables ξ and ξ̂, respectively.
pm, p̂n Probabilities for scenario m in true distribution

P and scenario n in empirical distribution P̂.
Q Joint distribution of random variables ξ and ξ̂

with marginal distributions P and P̂.
qn,m Probability in joint distribution Q.
α Confidence level for confidence set D.
θ Tolerance level for the distance between random

variables ξ and ξ̂.
Nh Size of the historical data.
N Number of bins.
δ Diameter of supporting space.
d(·, ·) Function to calculate the distance between ran-

dom variables.
Compact Representation
y, x Vector of first-stage and second-stage variables.
σ Vector of slack variables.
a, b, c, d Coefficient vectors for abstract formulation.
A,B,C,D Coefficient matrices for abstract formulation.
Ψ(Φ), ω Coefficient matrix or vector for parametric cuts.
µ, λ Vector of dual variables.
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I. INTRODUCTION

THE penetration of renewable energy, typically wind and
solar energy, keeps increasing in the power systems.

The intermittent and unpredictable nature of renewable energy
brings significant challenges to system operators. Flexible
generation resources, such as quick-start units, can be quickly
turned on to mitigate the shortage of energy supply that is
caused by the intermittent renewable energy output in the near
real-time. Due to this, more and more flexible generation re-
sources become important tools for operators to enhance power
system flexibility and security. Therefore, unit commitment
(UC) models need to be robust to manage the uncertainty
from renewable energy resources, and be powerful to reflect
the capability of flexible generation resources.

To hedge against the risk of the intermittent renewable en-
ergy, stochastic programming (SP) [1]-[4] and robust optimiza-
tion (RO) [5]-[7] approaches have been extensively studied for
power system operation and planning applications. However,
SP might result in unreliable decisions due to the blind as-
sumption of probability distributions, and RO is too pessimistic
because the worst-case scenario is typically unlikely to happen.
By being able to efficiently utilize a large amount of historical
data and address the probability distribution uncertainty with
partial information of it, distributionally robust optimization
(DRO) approaches can offer reliable while less conservative
decisions, thus have recently been applied to UC problems
[8]-[11]. In these DRO based works, the regular and flexible
generation resources are treated in the same manner, i.e., the
UC decisions for flexible generation resources are modeled as
first-stage variables (also known as here-and-now variables).
In fact, this neglects the flexible start-up and shut-down
capabilities of flexible generation resources in near real-time
operations, which can potentially cause an increase in cost
(as shown in section IV). In this study, we propose a novel
model to better quantify the flexibility of flexible generation
resources in distributionally robust unit comment problems
(denote as ‘improved DRUC’ hereafter). The proposed model
is formulated as a two-stage distributionally robust model
with commitment variables for regular units in the first stage
and commitment variables for flexible generation resources
in the second stage. In contrast to traditional distributionally
robust UC (denote as ‘traditional DRUC’ hereafter) models
in the literature, our improved DRUC model treats decision
variables for flexible generation resources as second-stage
variables (also known as wait-and-see variables), thus can
better characterize the start-up and shut-down flexibility of
flexible generation resources and reduce the system cost.

L-shaped method (or Benders decomposition) has been
used to solve the two-stage distributionally robust optimization
model with continuous recourse decisions in the second stage
[8], [9], while we need to address the challenging mixed-
binary recourse decisions in our improved DRUC model. To
tackle this issue, we deploy the decomposition algorithmic
framework proposed by [12], which can finitely converge with
moment or Wasserstein metric based confidence sets.

However, in [12], the first-stage mixed-binary linear pro-
gram (MBLP) is supposed to be relatively small, and thus can

be solved purely by cutting plane methods to obtain its linear
program (LP) basis matrix. This is numerically difficult for
our first-stage UC problem, which contains a large number
of commitment decision variables and feasibility cuts. Thus,
a revised approach is needed to generate cuts that are valid
for any first-stage solution, to convexify the second-stage LP
relaxation. We note the parametric cut proposed in [13], which
is used to solve stochastic UC with quick-start units, is valid
for the second-stage problems given any first-stage solution.
Authors of [14] further applied the parametric cut in [13]
to a robust UC problem with quick-start units to guarantee
the feasibility of second-stage problems. We first use the
parametric cut in [13], and found it might stop improving the
integrality gap after several iterations, thus cannot guarantee
the tightness of the second-stage relaxation. To tackle this,
we customize the lift-and-project cut generation approach in
[15], [16] for our specific UC problem. In comparison to only
using the parametric cut in [13], our cut generation approach
can obtain a tighter second-stage LP relaxation.

In addition, the algorithm in [12] requires the recourse
problem relatively complete, but first-stage UC decisions from
initial iterations are most likely to make the recourse problem
infeasible. In this work, we use a scenario filtering based
feasibility cut approach to keep the recourse problem feasible.

We summarize our contributions in the following.
• Compared to traditional two-stage DRUC methods, our

approach allows commitment decisions for flexible gen-
eration resources to be adjustable according to the near
real-time realization of renewable energy uncertainty. We
find modeling this feature has benefits in reducing ex-
pected operation cost, and potentially avoiding infeasibil-
ity caused by traditional DRUC modeling when feasible
commitment schemes exist for the physical system.

• A revised integer L-shaped algorithm is proposed to solve
our formulated two-stage distributionally robust mixed-
binary program. In addition to the cutting plane method in
[13], a customized lift-and-project cut generation method
is used to strengthen the LP relaxation of the second-stage
mixed-binary program, and thus enhance the performance
of the solution strategy.

II. PROBLEM FORMULATION

In this section, we introduce our improved DRUC formula-
tion, and define a confidence set for the day-ahead renewable
energy forecast error distribution by using Wasserstein metric.

A. Improved DRUC Formulation

In this work, our improved DRUC problem is formulated
based on a two-stage distributionally robust optimization
framework. UC decisions for regular units are modeled in the
first stage, while UC decisions for flexible generation resources
and economic dispatch decisions for all units are modeled in
the second stage. In contrast to traditional two-stage stochastic
programming models, the probability distribution P of renew-
able energy output in our model is assumed to be ambiguous
and running within confidence set D, which is constructed
by using historical data. The robustness of UC solution is



WANG et al.: DISTRIBUTIONALLY ROBUST UC WITH FLEXIBLE GENERATION RESOURCES CONSIDERING RENEWABLE ENERGY UNCERTAINTY 3

achieved by minimizing the overall cost under the worst-case
probability distribution in the confidence set D.

min
∑
t∈T

∑
i∈Gr

(SUi · vi,t) + max
P∈D

EP [Q (uGr , vGr , ξ)] (1a)

s.t. ui,t − ui,t−1 ≤ vi,t ∀i ∈ Gr, t ∈ T (1b)
t∑

k=t−UTi+1

vi,k ≤ ui,t ∀i ∈ Gr, t ∈ [UT i, Nt] (1c)

t∑
k=t−DTi+1

vi,k ≤ 1− ui,t−DTi

∀i ∈ Gr, t ∈ [DT i, Nt] (1d)
ui,t, vi,t ∈ {0, 1} ∀i ∈ Gr, t ∈ T (1e)

where Q (uGr , vGr , ξ) is equal to,

min
∑
t∈T

(∑
i∈Gr

φi,t(ξ) +
∑
i∈Gf

(SUi · vi,t(ξ)+φi,t(ξ))
)

(2a)

s.t.
∑
i∈G

pi,t(ξ) =
∑
i∈D

Di,t −
∑
i∈W

Wi,t(ξ) ∀t ∈ T (2b)

−F i ≤
∑
b∈B

SFb,i ·
( ∑
i′∈Gb

pi′,t(ξ)−
∑
i′∈Db

Di′,t

+
∑
i′∈Wb

Wi′,t(ξ)

)
≤ F i ∀i ∈ L, t ∈ T (2c)

βji · pi,t(ξ) + γji · ui,t ≤ φi,t(ξ)
∀i ∈ Gr, t ∈ T , j ∈ [1, J ] (2d)

P i · ui,t ≤ pi,t(ξ) ≤ P i · ui,t ∀i ∈ Gr, t ∈ T (2e)

pi,t(ξ)− pi,t−1(ξ) ≤ RUi · ui,t−1 +RU i · (1− ui,t−1)

∀i ∈ Gr, t ∈ T (2f)
pi,t−1(ξ)− pi,t(ξ) ≤ RDi · ui,t +RDi · (1− ui,t)

∀i ∈ Gr, t ∈ T (2g)
βji · pi,t(ξ) + γji · ui,t(ξ) ≤ φi,t(ξ)

∀i ∈ Gf , t ∈ T , r ∈ [1, J ] (2h)
P i · ui,t(ξ) ≤ pi,t(ξ) ≤ P i · ui,t(ξ)

∀i ∈ Gf , t ∈ T (2i)
ui,t(ξ)− ui,t−1(ξ) ≤ vi,t(ξ) ∀i ∈ Gf , t ∈ T (2j)
vi,t(ξ) ≤ ui,t(ξ) ∀i ∈ Gf , t ∈ T (2k)
vt,k(ξ) ≤ 1− ui,t−1(ξ) ∀i ∈ Gf , t ∈ T (2l)
ui,t(ξ), vi,t(ξ) ∈ {0, 1} ∀i ∈ Gf , t ∈ T (2m)

The objective function (1a) of improved DRUC formulation
is the total cost that includes the first-stage UC cost of the
regular units and the expected second-stage dispatch cost under
the worst-case probability distribution. Here we use vGr and
uGr to represent all the start-up and commitment variables
for regular units. The lower bounds for start-up variables
are modeled in (1b). Constraints (1c) and (1d) describe the
minimum on-line and off-line time constraints, respectively.
Binary variables are declared in (1e).

The second-stage objective function (2a) is the expected
future dispatch cost, which includes UC costs for flexible
generation resources. System power balance and branch flow
limits are modeled in (2b) and (2c), respectively. Piece-wise

linear constraints with R pieces are modeled in (2d) and
(2h) to approximate quadratic cost functions for regular and
flexible generation resources, respectively. Constraints (2e) and
(2i) enforce the bounds for output power. Constraints (2f)
and (2g) are ramp-up and ramp-down constraints for regular
generation resources, respectively; corresponding constraints
for flexible generation resources are not modeled due to
their fast-ramp capabilities. In a similar manner to (1b)-
(1e), commitment constraints for flexible generation resources
are modeled in (2j)-(2m). Note constraints (2h)-(2l) together
with corresponding trivial non-negative constraints for binary
variables are the convex hull for quick-start units from a single-
unit perspective [17]. However, with (2b)-(2g) included, the
whole set of constraints is not a perfect formulation, thus needs
further convexification.

The improved DRUC formulation is a two-stage distribu-
tionally robust optimization with mixed-binary recourse since
binary commitment variables for flexible generation resources
are modeled in the second-stage problem. In contrast to tradi-
tional DRUC formulations in the literature, our formulation
can properly model the flexible adjustment capabilities of
flexible generation resources to address the renewable energy
power uncertainty, thus enabling a more accurate flexible
resource quantification in UC problems.

B. Confidence Set

To construct a confidence set for the ambiguous distribution,
several approaches are studied, such as moment information
based sets [18], [19], probability metric based sets including
L1, Linf metrics [8], [20] and Wasserstein metric [21], [22].
Among these, Wasserstein metric based confidence set is
extensively studied in recent years, due to its good property
on convergence and full utilization of historical data. As the
distributionally robust integer L-shaped algorithm in [12] is
proved to be finitely convergent under Wasserstein metric
based confidence set, in this work, we use Wasserstein metric
defined in (3) [23] to construct a confidence set with empirical
data of day-ahead renewable power forecast error.

Dw(P, P̂) := inf
Q

{
EQ[d(ξ, ξ̂)] : P = ϕ(ξ), P̂ = ϕ(ξ̂)

}
(3)

where ξ and ξ̂ are random variables for day-ahead renewable
power forecast error, which are associated with true distribu-
tion P and empirical distribution P̂, respectively. d(ξ, ξ̂) is a
predefined distance between random variables ξ and ξ̂, e.g.,
d(ξ, ξ̂) = |ξ − ξ̂|. Q denotes the joint distribution of ξ and ξ̂
with marginal distributions P and P̂. The probability function
is represented by ϕ(·).

Using Wasserstain metric, we construct a distribution-based
confidence set D = {P ∈ P+ : Dw(P, P̂) ≤ θ}. The tolerance
level of the distance θ is determined by a given confidence
level α, the number of bins N , the diameter δ of the supporting
space, and the size of historical data Nh, as shown in (4) [24].

θ =
Nδ

4Nh
log

(
2N

1− α

)
(4)

We denote ξ1, ξ2, · · · , ξN as the discretized scenarios of ξ,
and ξ̂1, ξ̂2, · · · , ξ̂N as the discretized scenarios of ξ̂. Based on
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the definition of Wasserstein metric and the construction of
Dw(P, P̂) in (3), we can reformulate the confidence set D as
the constraints in (5).∑N

n=1

∑N

m=1
qnm · d(ξm, ξ̂n) ≤ θ (5a)∑N

n=1
qnm = pm ∀m = 1, . . . , N (5b)∑N

m=1
qnm = p̂n ∀n = 1, . . . , N (5c)∑N

m=1
pm = 1 (5d)

where constraint (5a) represents the expectation of distance
between ξ and ξ̂ over the joint distribution Q. Constraints (5b)
and (5c) represent that P and P̂ are the marginal distributions
of Q respectively. Constraint (5d) ensures that the distribution
P is indeed a distribution.

Although only renewable energy uncertainty is taken into
account, the proposed method can be easily extend to con-
sidering load uncertainty. This can be achieved in a net-load
manner. In equations (2b) and (2c), the term

∑
i∈Db Di,t −∑

i∈Wb Wi,t(ξ) can be represented as uncertain net-load
Dnet
b,t (ξ). The corresponding confidence set can be constructed

similarly with empirical distribution of net-load forecast error.

C. Abstract Formulation

The improved DRUC model in (1) can be presented in an
abstract form, as shown in (6).

min
y

a>y + ϑ(y) (6a)

s.t. Ay ≥ b, y ∈ {0, 1}2|Gr||T | (6b)

where (6a) corresponds to the objective function in (1a) with
y = [u>Gr , v

>
Gr ]>, and (6b) corresponds to constraint (1b)-(1e).

In (1a), a>y is start-up cost for regular units; ϑ(y) denotes the
second-stage objective function, which considers the expected
cost under the worst-case distribution in confidence set D, i.e.,
ϑ(y) = maxP∈DEP[Q(y)].

The second-stage problem can be reformulated in (7) with
discretized scenarios. This is referred to as distribution sepa-
ration problem, and the algorithm to solve it is referred to as
distribution separation algorithm [12].

DS(Q(y)) = max
P∈D

∑N

n=1
pnQn(y) (7)

where,

Qn(y) = min
xn

c>xn (8a)

s.t. Bxn + Cy ≥ dn : µn (8b)
xn ∈ {0, 1}2|Gf ||T | × RV−2|Gf ||T | (8c)

Corresponding to (2a), the objective function (8a) is to
minimize the economic dispatch cost for scenario n in-
cluding start-up cost for flexible generation resources. Here
xn = (uGf (ξn), vGf (ξn), φ(ξn), p(ξn)), which contains com-
mitment variables for flexible generation resources, as well as
power output and cost variables for all generators. Constraints
(8b)-(8c) corresponds to (2b)-(2m). V is the number of second-
stage variables in Qn(y).

Initialization

Scenario Filtering Method

(in subsection III-B)

   Distributionally Robust

Integer L-shaped Algorithm

Master Problem

Distribution Separation Problem

Parametric Cuts Generation

(in subsection III-C)

Terminate

active
scenarios

UC decision for 
regular units

optimality
cuts

infeasibility
identified

Fig. 1. Algorithmic framework.

III. REVISED INTEGER L-SHAPED ALGORITHM

In this section, we describe a revised integer L-shaped
algorithm to tackle the two-stage distributionally robust mixed-
binary model. The algorithmic framework is presented first. A
scenario filtering method is then introduced to address the first-
stage feasibility issue. To offer high-quality optimally cuts,
the second-stage convexification is achieved by parameter cut
generation methods. Finally, we provide detailed steps for the
whole algorithm.

A. Distributionally Robust Integer L-shaped Algorithm

We demonstrate the overall algorithmic framework to pro-
vide a big picture for this section, and then elaborate on a
distribution separation algorithm to solve the max-min prob-
lem in (7).

1) Decomposition Framework: The algorithm follows a
decomposition framework, as shown in Fig. 1. The first
and second stage problems shown in (6) and (7) correspond
to master and distribution separation problems, respectively.
Given UC decisions for regular generation resources from
the first stage, the distribution separation problem is solved
to obtain the expected cost under the worst-case distribution.
A sequential convexification procedure (in subsection III-C)
for the second stage is also introduced by using parameter cut
generation methods to offer high-quality optimally cuts for the
master problem. In addition, to ensure the recourse problem
relatively complete as mentioned in [12], an iterative scenario
filtering method (in subsection III-B) is used when infeasibility
is identified in the second stage.

2) Distribution Separation Problem: The distribution sepa-
ration problem in (7) is solved as follows: Qn(ŷk) in (8) is first
solved for each bin n given fixed ŷk; then solve DS(Q(ŷk)) in
(7) with fixed optimal Q∗n(ŷk), i.e., maxP∈D

∑N
n=1 pnQ

∗
n(ŷk)

to obtain the worst-case pk∗n . This distribution separation
algorithm associated with Wasserstein metric based confidence
sets is finitely convergent, according to [12]. Optimally cuts for
the first stage are further created with parameter cut generation
methods in subsection III-C. The detailed steps that integrate
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distribution separation algorithm and optimally cut generation
are summarized in subsection III-D.

B. 1st-Stage Feasibility Cuts: Scenario Filtering
A scenario filtering method is used to meet the relatively

complete recourse requirement in [12]. We notice that the
formulation has a relatively complete recourse if operational
constraints (8b)-(8c) for all the scenarios are included in
the first-stage problem (6). However, with more scenarios
included, the size of (6) would become large. In light of
the transmission constraint filtering methods proposed in [25],
[26], we found constraints (8b) for most scenarios are not
binding. In this work, a heuristic scenario filtering method
is proposed to detect active scenarios and add corresponding
operational constraints to (6). The method is described in the
following steps.
F1 Calculate the peak net-load maxt∈T {

∑
i∈DDi,t −∑

i∈WWi,t(ξ
n)} for each scenario n = 1, ..., N . Denote

the scenario with maximum peak net-load as nmax.
F2 Include operational constraints (8b)-(8c) that correspond

to nmax into the first-stage problem (6).
F3 Run the first-stage problem (6), and obtain a solution ŷ.
F4 Check the feasibility for each scenario n by adding slack

variables σn:

min
xn,σn

1>σn (9a)

s.t. Bxn +Dσn ≥ dn − Cŷ (9b)
xn ∈ {0, 1}2|Gf ||T | × RV−2|Gf ||T | (9c)

F5 If σn = 0 for all the n scenarios, recourse problems are
feasible under the first-stage decision ŷ; If 1>σn > 0,
add constraints (8b)-(8c) that correspond to scenario(s)
with maximum objective into (6), and return to F3.

It should be noted the initial scenario identification in F1 is
only a warm-start strategy, which doesn’t necessarily guarantee
the worst-case is identified. More scenarios might be included
iteratively if infeasibility is found in subsequent steps.

C. 2nd-Stage Mixed-Binary Cuts: Sequential Convexification
To solve the two-stage distributionally robust optimization

model, Benders decomposition is a traditional approach. How-
ever, given the second stage is a mixed-binary problem, duality
theory cannot be directly applied to generate high-quality valid
Benders cuts. In this work, we use two types of parametric cuts
to strengthen the second stage. The idea is to sequentially
convexify the second-stage relaxation by adding parametric
cuts in each iteration. The parametric cuts in [13] and lift-
and-project cuts are added sequentially. As the parametric cuts
in [13] can be fast calculated, they are added first. Lift-and-
project cuts are then used to further tighten the model. As
the second-stage formulation becomes tighter, the quality of
Benders cuts generated for (6) could be potentially improved.

1) Parametric Cuts in [13]: The parametric cut that is
initially proposed by authors of [13] for stochastic unit com-
mitment is valid for the second stage given any first-stage
solution. We first deploy it to convexify our second-stage LP
relaxation. The detailed implementation is provided in the
appendix.

2) Lift-and-Project Cuts: We find the parametric cut in
[13] cannot always guarantee the tightness of the second-
stage relaxation, as it might stop improving the integrality gap
after several iterations (as shown in subsection IV-C). Lift-
and-project cut has been applied to two-stage distributionally
robust mixed-binary problems in [12]. However, for our two-
stage UC problem which contains a large number of binary
variables in the first stage, it is difficult to obtain LP basis after
using cutting plane algorithms to solve the first-stage problem.
To address this issue, we revise the method in [12], and
propose a customized lift-and-project cut generation process
for our particular problem.

To ensure the generated lift-and-project cuts are valid for
the second-stage problem in (8) given any first-stage solution
from (6), we apply a lift-and-project process to optimization
problem (10) for scenario n. Note regardless of objective
parameter values ã> and c̃>, the generated cuts are valid for
the feasible region formed by (10b)-(10d).

min
y,xn

ã>y + c̃>xn (10a)

s.t. Ay ≥ b, Bxn + Cy ≥ dn (10b)
y ∈ {0, 1}2|Gr||T | (10c)
xn ∈ {0, 1}2|Gf ||T | × RV−2|Gf ||T | (10d)

Given optimal solution z∗ = (y∗, x∗n) for an LP relaxation
of (10) (probably with previous generated cuts) and a binary
variable index l, we use the LP in (11) to generate a lift-and-
project cut [15], [16]. With the index l, inequalities zl ≤ 0
and zl ≥ 1 split the feasible region of LP relaxation of (10).
Lift-and-project cuts are obtained from the disjunction of the
splitted regions [16]. Here (11f) is a normalization constraint.
Readers can refer to [15], [16] for more details of the split-cut
generation LP in (11). To distinguish the matrices/vectors in
(10) and (12), primes are marked in the corresponding terms
in (12) as trivial bound constraints for binary variables are
included in it.

min
κ,ζ,g,g0,h,h0

z∗>κ− ζ (11a)

s.t. κ− Ã>g + g0 · el ≥ 0 (11b)
κ− Ã>h− h0 · el ≥ 0 (11c)
−ζ + b̃>g = 0 (11d)
−ζ + b̃>h+ h0 = 0 (11e)
1>g + g0 + 1>h+ h0 = 1 (11f)
κ ∈ Rn

var

, ζ ∈ R (11g)
g, h ∈ Rn

con

+ , g0, h0 ∈ R+ (11h)

where, el is the l-th unit vector.

Ã =

(
A′ 0
C ′ B′

)
ncon×nvar

, b̃ =

(
b′

d′n

)
ncon×1

(12)

and ncon, nvar are the number of constraints and variables in
the LP relaxation of problem (10), respectively, as indicated
in (12).

With the optimal solution of (11), i.e., κ∗ and ζ∗, a lift-and-
project cut can be obtained in the form of (13).(

ŷ>, x>n
)
· κ∗ ≥ ζ∗ (13)
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The lift-and-project cut generation process is summarized
in the following.
L1 Initialization. Set the counter for cut number nL&P as 0,

maximum cut number as nmax
L&P, and tolerance for integer

solutions as εint.
L2 Solve the LP relaxation of (10) with previous generated

cuts, obtain an optimal solution z = (y∗, x∗n).
L3 If all the binary variables in y∗ and x∗n are close to

integral values within an εint tolerance, or the cut number
reaches the predefined maximum number (i.e., nL&P ≥
nmax

L&P), terminate the cut generation process and return
the generated cuts; otherwise, go to Step L4.

L4 Given a predefined priority list, let l be the first binary
variables with non-integral value that exceed εint-distance
to integer values. Solve the cut generation LP (11) that
splits the l-th binary variable, to generate a lift-and-
project cut in the form of (13). Assign nL&P ←− nL&P +1,
and return to Step L2.

In comparison to the algorithm in [15], which is designed
for general purposes, some customized adaptions and heuristic
rules are made for our particular UC problem.

a) In this work, we limit the maximum cut number as nmax
L&P

in each iteration. The authors of [15] aim to solve an MBLP,
while we are trying to obtain a tight LP relaxation. Thus, in
our problem, it may not be necessary to keep adding cuts until
an integral solution is obtained.

b) A largest-index policy is used in [15], in fact, the
sequence of adding split inequalities can affect the convex-
ification performance. Due to the cost minimization objective
of UC problems, ui,t values that should be 1 in the MBLP
tend to approach p∗i,t/P i in the relaxed LP. A cost-based
heuristic priority index (PI), as defined in (14), is proposed
to estimate potential objective value decrease in LP relaxation
that is caused by non-integral value of ui,t. Higher priorities
are assigned to variables with higher PI values. We denote this
heuristic rule as ‘priority-index policy’ hereafter.

PIi,t =
(
1− p∗i,t/P i

) (
aiu
∗
i,t + SUiv

∗
i,t

)
∀i ∈ Gf , t ∈ T (14)

where, ai is the no-load cost of unit i; p∗i,t, u
∗
i,t and v∗i,t

are the optimal solution from the second-stage MBLP (8)
(when performing Step 4 of distributionally robust integer L-
shaped algorithm in subsection III-D). Note although on-the-
shelf solvers can quickly solve MBLP problems, they may not
provide perfect formulations, as pure cutting plane approaches
are usually not used. However, the solutions can be leveraged
in our cut generation process.

c) It is important to assign appropriate values for ã and c̃ in
the objective of (10) to guide the direction for convexification.
In our implementation, for dispatched units in the MBLP
solution, we scale down the objective terms that correspond
to φi,t and vi,t. Thus, commitment variables ui,t have higher
objective coefficients, which intuitively would drive the con-
vexification direction along with these variables. Note these
objective coefficients are only used for cut generation. We de-
note this heuristic rule as ‘objective-scaling policy’ hereafter.

Finally, for the k-th iteration in distributionally robust
integer L-shaped algorithm as shown later in subsection III-D,

we present the parametric cuts in (20) and (13), which are
generated from the two aforementioned cutting plane methods,
in a compact formulation in (15).

Ψ>n,kxn ≥ ωn,k − Φ>n,kŷ
k : λn,k (15)

D. Steps of the Algorithm

We integrate the scenario filtering method, and two kinds
of parametric cuts into the distributionally robust integer L-
shaped algorithm in [12] to solve our improved DRUC model.
Here a set Xn is used to represent the feasible region formed
by second-stage constraints (8b)-(8c) for scenario n. The LP
relaxation of Qn(y) in (8) is denoted as RQn(y). The whole
algorithm is summarized in the following steps.

1. Initialization. Set iteration counter k ←− 1, scenario
counter n ∈ {1, · · · , N}, and a relative gap ε.

2. Obtain a first-stage decision ŷk and a lower bound LBk

for the original problem through:
– If k = 1, obtain ŷk and LBk using proposed scenario

filtering method, i.e., Steps F1-F5 in subsection
III-B.

– If k > 1, obtain ŷk and LBk by solving the master
problem (6).

3. For every renewable energy scenario ξ̂n, solve RQn(ŷk)
with all parametric cuts (15) generated in previous it-
erations. Obtain optimal solution x̃∗n, optimal objective
RQ∗n(ŷk), and the associated optimal dual multipliers.

4. Check for every renewable energy scenario ξ̂n whether
x̃∗n ∈ Xn. For each n such that x̃∗n ∈ Xn, set x∗n ←− x̃∗n,
and Q∗n(ŷk)←− RQ∗n(ŷk). For each n such that x̃∗n /∈ Xn:

– Solve MBLP Qn(ŷk) to get x∗n and Q∗n(ŷk).
– Generate parametric cuts in (15) by using Steps Z1-

Z3 in the appendix and Steps L1-L4 in subsection
III-C, then add them to the corresponding second-
stage relaxation problem (8).

– Solve the second stage relaxation problem with
parametric cuts to update x̃∗n, RQ∗n(ŷk), and the
associated optimal dual multipliers.

5. If any of problems RQn(ŷk) in Step 3 or Qn(ŷk) in
Step 4 is infeasible, set k ←− k+ 1, and execute scenario
filtering method in subsection III-B from step F4. After
obtaining an updated ŷk and LBk, then go to Step 3.
Otherwise, for each n, use Q∗n(ŷk) to solve DS(Q(ŷk))
in (7). Obtain optimal solution pk∗n and optimal objective
DSk∗. Set UBk ←− a>ŷk +DSk∗ as an upper bound for
the original problem.

6. If (UBk − LBk)/UBk ≤ ε, terminate and output the
results. Otherwise, add optimality cut in (16) to master
problem (6).

ϑ ≥
∑N

n=1
pk∗n ·

{
µ∗>n,k · (d− Cy) +∑k

j=1
λ∗>n,j,k · (ωn,j − Φ>n,jy)

}
(16)

where, µ∗n,k and λ∗n,j,k are optimal dual multipliers asso-
ciated with constraints (8b) and parametric cuts in (15),
respectively, obtained by solving RQn(ŷk) in Steps 3-4.
Set k ←− k + 1 and go to Step 2.
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Fig. 2. Flow chart of the proposed algorithm.

It should be noted that parametric cuts in (15) are valid for
any first-stage decision ŷ, thus cuts from previous iterations
will be remained in each iteration.

To clearly illustrate the process of the proposed algorithm,
a flow chart is provided in Fig. 2.

IV. CASE STUDY

In this section, we test the performance of our approach on
a 6-bus system and modified IEEE 118-bus system. CPLEX
12.10 [27] is used to solve LP and MBLP problems on a
computer with Intel Core i7-9700 CPU and 64 GB RAM.

A. 6-Bus System

This test system contains 6 buses and 8 transmission lines.
It has three regular thermal units (G1, G2, and G4), one
quick-start unit (G3) as a flexible generation resource, and
one wind farm. The wind farm is located at bus 2 with 100
MW installed capacity. The system diagram and detailed data
are available online in [28]. The normalized day-ahead forecast
error of wind power is calculated by data in the year 2019 from
California ISO (CAISO) open access same-time information
system (OASIS) [29].

1) Analysis of Flexibility Benefits: In comparison to exist-
ing DRUC models in the literature, the key feature of our
improved DRUC lies in modeling the flexible start-up and
shut-down capabilities of flexible generation resources in the
near real time. To demonstrate the benefits of our proposed
formulation, a traditional DRUC approach [8], which doesn’t
model the commitment capability of flexible generation re-
sources in the recourse problem, is used for comparison. In
our numerical experiments, we set the number of bins as 20,
and the confidence levels α as 0.99 [8] for both improved and
traditional DRUC cases.

Table I and Table II list the unit commitment solutions
obtained from improved and traditional DRUC, respectively,
with 365-day historical data. As the improved DRUC solution
in Table I indicated, the regular generator G2 is dispatched
in the day-ahead to satisfy the base load, while the flexible
generation resource G3 can be scheduled depending on the
realization of wind power (i.e, G3 starts up for scenarios S1-
S3, and is not committed for others). In this case, either G1 or
G3 could possibly be committed to address the peak net-load
in S1-S3. Although the fuel cost of regular unit G1 is cheaper
than that of G3, the quick-start unit G3 is supposed to be

TABLE I
IMPROVED DRUC SOLUTION IN 6-BUS SYSTEM (WITH 365-DAY

HISTORICAL DATA)

hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

uG1, uG4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
uG2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

uG3

S1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
S2 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
S3 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

S4-20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TABLE II
TRADITIONAL DRUC SOLUTION IN 6-BUS SYSTEM (WITH 365-DAY

HISTORICAL DATA)

hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

uG1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1
uG2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

uG3, uG4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Fig. 3. In-sample cost comparison for improved and traditional DRUC
approaches in 6-bus system (with 365-day historical data).

more economically committed for possible further scenarios,
as only a few scenarios need an additional unit to start up. On
the contrary, given G1 is not flexible to decide commitment
status in the near real time, having G1 committed in the day-
ahead may not be preferred as it is not needed for most
future scenarios. The solution of improved DRUC in fact
takes advantage of the flexibility of the quick-start unit G3 to
hedge against the risk of renewable uncertainty. However, from
the traditional DRUC solution in Table II, one can observe
that regular units G1 and G2 are dispatched, while quick-
start unit G3 is not committed. As traditional DRUC does not
appropriately model the flexibility of the quick-start unit G3
in the near real time, the commitment decisions for all units
are supposed to be made in the first stage (i.e., day ahead).
Consequently, the regular unit G1 is committed due to its lower
fuel price, and has to stay online for most scenarios in which
it is not needed.

For overall costs under the worst-case distribution, in con-
trast to $20390.6 from the traditional DRUC solution, cost
from the improved DRUC solution $19566.3 is reduced by
4.04%. Fig. 3 shows the detailed cost comparison of improved
and traditional DRUC for each scenario. As indicated, the
quick-start unit G3 only needs to be committed in 3 scenarios.
In S1, traditional DRUC has cost benefits over improved
DRUC as the fuel cost of G1 is cheaper. In S2 and S3, the
cost of the improved DRUC solution is lower even when G3 is
committed, as the quick-start unit G3 is dispatched for a few
hours in the improved DRUC solution, while the regular unit
G2 is committed for 8 hours in the day ahead to handle all
the scenario due to its inflexibility in the near real time. For
the rest of the scenarios, i.e., from S4 to S20, the improved
DRUC solution has cost benefits. The reason is that the quick-
start unit G3 is not supposed to be committed in S4-S20,
while the regular unit G2 still has to be online. As a result,
with our improved DRUC model, the cost under the worst-
case distribution can be reduced by leveraging the flexibility
of quick-start units.

2) A Toy Example for Traditional DRUC Infeasibility: We
design a toy illustrative case to show the traditional DRUC

TABLE III
AN ILLUSTRATIVE CASE FOR TRADITIONAL DRUC INFEASIBILITY

scenario probability net-load [load, wind] (MW)

t = 1 t = 2 t = 3

S1 0.5 80 [110, 30] 125 [140, 15] 125 [140, 15]
S2 0.5 42 [47, 5] 42 [42, 0] 80 [88, 8]

TABLE IV
COST FOR 6-BUS SYSTEM UNDER DIFFERENT SIZE OF HISTORICAL DATA

# of days
for histo-
rical data

in-sample out-of-sample

improved
DRUC ($)

traditional
DRUC ($) VF improved

DRUC ($)
traditional
DRUC ($) VF

10 21609.2 21933.6 1.48% 21616.2 21920.8 1.39%
50 19865.4 20585.7 3.50% 19857.0 20582.9 3.53%
100 19653.3 20427.5 3.79% 19675.8 20423.6 3.66%
365 19566.3 20390.6 4.04% 19583.6 20413.3 4.06%

formulation might be infeasible in some extreme cases, while
our improved DRUC can find a solution that physically makes
sense. Assume we only have two generators G2 and G3,
and the data settings in Table III is used in this 3 time-
period example. The formulation is extended to consider
net-load uncertainty. From improved DRUC, we obtain an
optimal solution uG2 = (1, 1, 1), uG3 = (0, 1, 1) for S1,
and uG3 = (0, 0, 0) for S2. However, the traditional DRUC
formulation is infeasible. The master problem (6) is reported
to be infeasible by the CPLEX solver in the first iteration of
our algorithm after S1 and S2 are added as feasibility cuts,
which indicates S1 and S2 are conflicting in the traditional
DRUC formulation under a no-load-shedding assumption. In
detail, G3 should be online in hour 2 of S1 as the net-load
125 MW is larger than the capacity of G2 (i.e., PG2 = 120
MW), while G3 should be offline in the same time period of
S2 as the net-load 42 MW is smaller than the sum of minimum
stable levels of G2 and G3 (i.e., PG2 +PG3 = 44 MW). This
conflict also cannot be resolved even if wind curtailment is
considered. As the unit commitment decisions for quick-start
unit G3 are modeled in the first stage of the traditional DRUC
formulation, the aforementioned conflict causes infeasibility.
Although this is a conceptual example, it shows the advantage
of the improved DRUC formulation on modeling the near real-
time adjustment flexibility of flexible generation resources.

3) Statistical Results for Flexibility Benefits: Cost reduction
of the improved DRUC formulation from the traditional DRUC
formulation under the worst-case distribution is tested with dif-
ferent sizes of historical data. To quantify the cost benefits, we
propose a metric, namely, value of flexibility (VF), to measure
the impact of our flexible generation resources modeling on
the system cost, as shown in (17).

VF =
costtraditional DRUC − costimproved DRUC

costtraditional DRUC
× 100% (17)

where costtraditional DRUC and costimproved DRUC are costs from
traditional and improved DRUC, respectively.

We employ Monte-Carlo method to generate 5000 samples
for the worst-case distribution that corresponds to each test.
These samples are then used to estimate out-of-sample costs
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for traditional and improved DRUC approaches. In Table IV,
we noticed the out-of-sample cost is close to corresponding in-
sample cost. As indicated, both in-sample and out-of-sample
costs obtained from traditional DRUC are greater than the
costs from improved DRUC under the same size of historical
data. VF increases as the size of historical data increases.
This verifies our proposed DRUC formulation can reduce the
system cost through properly modeling the fast adjustment
capability of flexible generation resources.

Furthermore, 500 distributions with different standard de-
viations are generated in the corresponding confidence set of
each case. For each distribution, 5000 samples are used to
estimate the expected cost. As shown in Fig. 4, in this case,
the improved DRUC can generally reduce the system cost in
comparison to traditional DRUC under various distributions.
This benefit becomes more significant if more historical data
is used.

4) Comparison to Robust and Stochastic Approaches:
The improved DRUC approach is also compared to robust
optimization and stochastic programming approaches. Note
we use robust UC (denote as ‘RUC’ hereafter) and stochastic
UC (denote as ‘SUC’ hereafter) that consider the near real-
time adjustable capability of flexible generation resources to
facilitate a fair comparison. In fact, RUC can be regarded
as a special case of the proposed framework by setting the
confidence level α as 1. When α = 1, θ tends towards
+ inf , and the constraint (5a) in the confidence set is not
enforced. Thus, the probability for the worst-case scenario will
be 1 when solving DS(Q(ŷk)) in (7). Then, the proposed
formulation is equivalent to RUC formulation. We implement
RUC in this way. SUC is implemented in a scenario-based
manner, and solved by Benders decomposition with our the
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Fig. 4. Expected cost comparisons for improved and traditional DRUC under
500 distributions in 6-bus system. The evaluated UC decisions in subplots (a)
and (b) are from models with 10-day and 365-day historical data. Each point
corresponds to expected cost under a distribution.

TABLE V
OUT-OF-SAMPLE COST COMPARISON OF DRUC, RUC AND SUC FOR

6-BUS SYSTEM UNDER WORST-CASE DISTRIBUTION

# of days
for histo-
rical data

DRUC RUC SUC

cost
($)

infeasible
samples

cost
($)

infeasible
samples

cost
($)

infeasible
samples

10 21616.2 0 21937.7 0 − 2014
50 19857.0 0 20578.2 0 − 516
100 19675.8 0 20443.9 0 19728.9 0
365 19583.6 0 20404.1 0 19583.6 0

cutting plane approaches in subsection III.
The out-of-sample cost comparisons of SUC, RUC, and

our proposed DRUC (taking α = 0.99 as an example) are
shown in Table V with 5000 generated samples for each worst-
case distribution from DRUC. As indicated, SUC suffers from
infeasibility issues when the number of historical scenarios is
relatively small. In such cases, as distributional uncertainties
are considered in SUC, scenarios with zero occurrences may
not have an accurate assessment of probability. Therefore,
decisions from DRUC are more reliable than those from
SUC. On the other hand, RUC aims to minimize the cost
for the worst-case scenario, which may result in conservative
commitment decisions. In this case, to optimize the cost for the
worst-case scenario S1, regular unit G1 will be committed as
analyzed before. In comparison to RUC, our proposed DRUC
can avoid this conservative solution. As the size of historical
data increases, DRUC cost under the worst-case distribution
converges to the risk-neutral SUC cost.

We also evaluate the performance of DRUC, RUC, and SUC
under the aforementioned 500 distributions. Note Fig. 5a only
shows feasible cases for SUC. This indicates SUC suffers from
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Fig. 5. Expected cost comparisons for DRUC, RUC and SUC under 500
distributions in 6-bus system. The evaluated UC decisions in subplots (a) and
(b) are from models with 10-day and 365-day historical data. Points of DRUC
and SUC may coincide partially in (b).
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TABLE VI
RELAXED LP SOLUTION COMPARISON FOR CASES WITH AND WITHOUT LIFT-AND-PROJECT CUTS IN 6-BUS SYSTEM

settings RLP solution of uG3 for 24 hours RLP
($)

MBLP
($) IGap

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

S1 w/o L&P 0 0 0 0 0 0 0.02 0.25 0.44 0.46 0.41 0.19 0 0 0 0 0 0 0 0 0 0 0.02 0 21222 21993 3.5%
w/ L&P 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 21993 21993 0.0%

S2 w/o L&P 0 0 0 0 0 0 0 0.07 0.26 0.29 0.24 0.01 0 0 0 0 0 0 0 0 0 0 0 0 20372 20811 2.1%
w/ L&P 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 20811 20811 0.0%

S3 w/o L&P 0 0 0 0 0 0 0 0 0.09 0.11 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0 19596 20060 2.3%
w/ L&P 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 20060 20060 0.0%

TABLE VII
RELAXED LP SOLUTION COMPARISON FOR CASES WITH AND WITHOUT HEURISTICS FOR LIFT-AND-PROJECT CUT GENERATION IN 6-BUS SYSTEM

settings iteration 1 iteration 2 iteration 3 iteration 4
ntotal

L&P
nL&P RLP ($) MBLP ($) IGap nL&P RLP ($) MBLP ($) IGap nL&P RLP ($) MBLP ($) IGap nL&P RLP ($) MBLP ($) IGap

S1 w/o heuristics 100 21443 21993 2.5% 100 21443 21993 2.5% 100 21443 21993 2.5% 100 21443 21993 2.5% > 400
w/ heuristics 23 21993 21993 0.0% 100 24595 24595 0.0% 92 20797 20797 0.0% 23 21993 21993 0.0% 238

S2 w/o heuristics 100 20372 20811 2.1% 100 20372 20811 2.1% 100 20372 20811 2.1% 100 20372 20811 2.1% > 400
w/ heuristics 100 20811 20811 0.0% 100 23259 23280 0.1% 44 20216 20216 0.0% 100 20811 20811 0.0% 344

S3 w/o heuristics 100 19601 20060 2.3% 100 19601 20060 2.3% 100 19601 20060 2.3% 100 19601 20060 2.3% > 400
w/ heuristics 47 20060 20060 0.0% 100 21911 22100 0.9% 54 19636 19636 0.0% 47 20060 20060 0.0% 248

infeasibility issues when the size of historical data is small.
The cost of DRUC solutions converges to the cost of SUC
solutions as the size of historical data increases, as shown in
Fig. 5b. The UC solutions from DRUC generally have cost
advantages over those from RUC.

5) Value of Lift-and-Project Cuts: To demonstrate the value
of lift-and-project cuts for our problem, we perform numerical
experiments in two case settings: the first one follows our
proposed algorithm, which incorporates lift-and-project cuts;
the second one only uses parametric cut in [13]. The maximum
cut number limit nmax

L&P for each scenario in each iteration is set
as 100. Taking our test on 6-bus system with 365-day historical
data as an example, the distributionally robust integer L-shaped
algorithm converges in 4 iterations with lift-and-project cuts
(denote as ‘w/ L&P’ in Table VI), while it doesn’t converge
with cuts in [13] only (denote as ‘w/o L&P’ in Table VI).
In fact, LP relaxation solutions remain unchanged for further
iterations in the case without lift-and-project cuts. Table VI
shows the detailed LP relaxation solutions of the second-stage
problem for S1-S3 in iteration 4. As indicated, an integral
solution can be found with lift-and-project cuts in this small
test case, so that the objective value of relaxed linear program
(RLP) is the same as that of the original MBLP. However, for
the case without lift-and-project cuts, a larger integral gap (as
defined in (18)) for each scenario appears. Thus, compared to
only using the parametric cut in [13], the second-stage problem
can be further strengthened by using our proposed lift-and-
project cut.

IGap =
objMBLP − objRLP

objMBLP

× 100% (18)

We also propose heuristic rules, i.e., priority-index policy
and objective-scaling policy in subsection III-C, to accelerate
the sequential convexification process. Lift-and-project cut
generation methods with and without heuristic rules (denote

as ‘w/ heuristics’ and ‘w/o heuristics’, respectively) are also
compared. Again, we use 6-bus case with 365-day historical
data as an example. Using our proposed heuristic rules,
the algorithm converges in 4 iterations. However, it doesn’t
converge in 10 iterations without these heuristics. In Table VII,
we collect the numbers of generated lift-and-project cut nL&P,
RLP objectives, and integral gaps for scenarios S1-S3 in the
first four iterations. As indicated, oftentimes the maximum cut
number limit nmax

L&P (which is 100 in this case) is reached in the
case without the proposed heuristic rules. After incorporating
these heuristic rules, a smaller integral gap is obtained with
fewer lift-and-projection cuts.

B. IEEE 118-Bus System

A modified IEEE 118-bus system [30] is used to test the
scalability of the proposed approach. This system has 118
buses, 188 transmission lines, 54 generators, and 3 wind farms.
Among these generators, there are 11 gas-fired quick-start
units as flexible generation resources. Wind farms are located
at buses 36, 69, and 77, with 400 MW, 800 MW, and 650 MW
installed capacities respectively. Transmission lines 23-32, 34-
36, and 77-78 are added to relieve congestion issues caused
by including the wind farms.

In the numerical tests, we set the gap tolerance ε as 0.05%,
and the confidence levels α for all the cases as 0.99. We
also generate 5000 Monte-Carlo samples for the worst-case
distribution that corresponds to each test, then use these
samples to evaluate out-of-sample costs. As shown in Table
VIII, it can be observed that the cost from improved DRUC
is less than the cost from traditional DRUC for all the in-
sample and out-of-sample cases. This verifies the cost can be
reduced in our improved DRUC model by taking advantage
of the flexibility of quick-start units. Given the expectation
that the installed capacity of flexible generation resources will
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TABLE VIII
COST FOR IEEE 118-BUS SYSTEM UNDER WORST-CASE DISTRIBUTION

# of days
for histo-
rical data

in-sample out-of-sample

improved
DRUC ($)

traditional
DRUC ($) VF improved

DRUC ($)
traditional
DRUC ($) VF

10 2111554 2116187 0.22% 2107793 2120323 0.59%
50 2033177 2040069 0.34% 2033108 2041434 0.41%
100 2035504 2042953 0.36% 2036826 2044321 0.37%
365 2024093 2031945 0.39% 2024619 2031685 0.35%

TABLE IX
COST FOR FUTURE 118-BUS SYSTEM WITH 19 QUICK-STARTS UNDER

WORST-CASE DISTRIBUTION

# of days
for histo-
rical data

in-sample out-of-sample

improved
DRUC ($)

traditional
DRUC ($) VF improved

DRUC ($)
traditional
DRUC ($) VF

10 2110612 2118401 0.37% 2112978 2117318 0.20%
50 2030721 2042206 0.56% 2028418 2042194 0.67%
100 2033567 2044883 0.55% 2032145 2043175 0.54%
365 2021790 2033813 0.59% 2023434 2034088 0.52%

gradually increase in the near future, we also test a system with
19 quick-start units. In this system, 8 regular units with less
than or equal to 100 MW capacities are assumed to retire in
the near future, and 8 quick-start units with the same capacities
are connected to the same buses. The results are reported in
Table IX. We use the same approach to evaluate out-of-sample
costs. Similar observations to those from the previous system
with 11 quick-start units can be obtained. In addition, we can
observe that the cost reduction from improved DRUC with
19 quick-starts is more significant, which indicates flexible
operations of quick-start units can play an important role in
reducing the system cost.

C. Discussions

1) On the Solution Time: We found although high-quality
second-stage relaxations can be obtained through the proposed
approach, which improves the convergence performance in
comparison to the methods in the literature, the convexification
process takes more time for large systems. For example, the
IEEE 118 bus system takes 11, 668.7 seconds to solve. On the
other hand, we notice that the computation process of Steps
3-4 (in the distributionally robust integer L-shaped algorithm)
can be parallelized. Thus, finer-grained parallel computing
methods can be further explored for larger-scale systems,
which is beyond the scope of this paper.

2) On the Convergence: The distributionally robust integer
L-shaped algorithm is proved to have finite convergence in
[12]. The employed lift-and-project cut is also proved to be
a finite-step cutting plane algorithm for MBLP in [15]. In
our numerical experience, the iterations for revised integer L-
shaped algorithm are relatively low. For tests with 365-day
historical data, the 6-bus and two 118-bus cases use 4, 4,
and 5 iterations to converge, respectively. It should be noted,
although the cutting plane algorithm is finitely convergent, its
converge rate depends on the heuristic rule as shown in our
case study. Moreover, the converge rate of the cutting plane

algorithm also affects that of the distributionally robust integer
L-shaped algorithm.

V. CONCLUSION

In this work, we propose a novel DRUC model that ad-
dresses UC problems with flexible generation resources such
as quick-start units. As binary variables appear in the second
stage so that traditional separation algorithms won’t apply, we
propose a distributionally robust integer L-shaped algorithm to
solve this two-stage mixed-binary model. Furthermore, revised
lift-and-project cut generation method is used to strengthen
the formulation of the second-stage problem. The numerical
experiment verifies that our improved DRUC approach yields
less cost in comparison to the traditional DRUC approach, due
to the appropriate flexibility modeling of flexible generation
resources in our approach.

APPENDIX: DETAILED IMPLEMENTATION OF PARAMETRIC
CUT IN [13]

For demonstration brevity, we present the discrete and con-
tinuous parts of xn as xd

n and xc
n, respectively. Accordingly,

c = [cd, cc], and B = [Bd, Bc]. The cut can be generated in
three steps as shown in the following.
Z1 Given a first-stage decision ŷ, for each scenario n, the

second-stage MBLP in (8) is solved, and the optimal
binary variables xd∗

n and continuous variables xc∗
n are

obtained.
Z2 We fix the binary variables xd∗

n to get an LP problem
from Qn(ŷ), as shown in (19a)-(19c).

min
xc
n

cc>xc
n (19a)

s.t. Bcxc
n ≥ dn − Cŷ −Bdxd∗

n : ηn (19b)
xc
n ∈ RV−2|Gf ||T | (19c)

Z3 After the optimal dual multipliers η∗n from (19b) are
obtained, the parametric cuts can be generated as in (20)
and added to the relaxation of the second stage problem
RQn(ŷ) iteratively.

cc>xc
n ≥ η∗>n (dn − Cŷ −Bdxd

n) (20)
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