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Abstract—Both discrete storage model (DSM) and con-
tinuous storage model (CSM) have been used in the power
system planning literature. In this work, we conduct a
sizing-error analysis for the use of CSM in generation
expansion planning (GEP), which shows more reasonable
storage sizing decisions are offered by the DSM in com-
parison to the CSM. However, when the DSM is considered
in the context of interval optimization, the discrete status
variables in mutually exclusive constraints and the strong
temporal coupling in state-of-charge (SOC) constraints cre-
ate significant challenges. To tackle this, a tailored interval
optimization approach is proposed to consider both DSM
and renewable energy uncertainty in GEP. Our approach is
proved to cover all worst cases in a given uncertainty set,
meanwhile running in an iteration-free manner. Moreover,
to reduce the conservativeness of investment decisions, a
bi-interval policy is designed to achieve a better trade-off
between investment cost and system security.

Index Terms—energy storage, generation expansion
planning, renewable energy uncertainty, interval optimiza-
tion.

NOMENCLATURE

Indices and Sets
i, s, t Index of devices in the power system, sce-

narios, and time periods
Ωg,Ωng Set of existing and candidate generators
Ωw,Ωnw Set of existing and candidate renewable en-

ergy sources
Ωnes Set of candidate energy storage
S, T Set of scenarios and time periods

Parameters
Ns, Nt Number of scenarios and time periods
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τs Number of days represented by the base case
scenario s in a year

Xi Annualized investment cost of generator i
αi, βi Annualized investment cost per unit power

capacity of renewable energy source or stor-
age i, and annualized investment cost per unit
energy capacity of storage i

Cgen
i,s,t Operation cost of generator i in time period

t of scenario s
Cch

i,s,t, C
dc
i,s,t Charging and discharging operation cost of

storage i in time period t of scenario s
P̂i Power capacity of existing renewable energy

source i
wci,s,t Normalized available power for existing and

candidate renewable energy source i in time
period t of scenario s

ds,t System load in time period t of scenario s
ϕ Maximum ratio for load shedding
nmax
i Maximum number of candidate generator i
CEi Carbon emission per unit of electricity for

generator i
CET Annual total carbon emission limit
CFi Maximum capacity factor for generator i
n̂i Number of existing generators i
P i, P i Maximum and minimum power output for

generator i
RUi, RDi Upward and downward ramp rate limits for

generator i
Pmax
i , Emax

i Maximum power capacity of candidate en-
ergy storage or candidate renewable energy
source i, and maximum energy capacity of
candidate energy storage i

δi, η
ch
i , η

dc
i Self-discharge rate, charging efficiency, and

discharging efficiency for energy storage i
γi,s,t, γi,s,t,
γi,s,0

Normalized upper bound, lower bound, and
initial state of charge levels for energy stor-
age i in time period t of scenario s

Decision Variables

ni Integer decision variable for the number of
candidate generator i to build

Pi, Ei Power capacity of candidate renewable en-
ergy source or energy storage i, and energy
capacity of energy storage i

ds
s,t, w

c
s,t Load shedding and renewable curtailment in
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time period t of scenario s
pi,s,t Injection power from generator or energy

storage i in time period t of scenario s
uch
i,s,t, u

dc
i,s,t Binary charging and discharging status vari-

ables for energy storage i in time period t of
scenario s

pch
i,s,t, p

dc
i,s,t Charging and discharging power for energy

storage i in time period t of scenario s
ei,s,t State of charge for energy storage i in time

period t of scenario s

I. INTRODUCTION

THE fluctuating and uncertain nature of renewable energy
is recognized as a significant challenge to maintain power

system security. Energy storage technology is a promising
option to address this challenge. Therefore, the inclusion of
storage options in power system planning has raised increasing
attention recently.

Generation expansion planning (GEP) has been broadly
investigated to offer optimal generation mixes [2]. Recent
works have incorporated energy storage candidates into GEP
formulations to address the intermittency of renewable energy
[3]. In the literature, both continuous storage model (CSM)
[4]–[7] and discrete storage model (DSM) [8]–[11] are incor-
porated into GEP and related power system planning problems.
Binary variables are used in the DSM to represent exclusive
charging and discharging statuses of storage, while they are
eliminated in the CSM1, which can be viewed as a relaxation
of the DSM. For a specific economic dispatch problem, the
relaxed CSM is analytically proved to be exact under certain
sufficient conditions [12]. Numerical counter examples for
transmission planning and unit commitment are shown in [13].
A similar observation was earlier presented in the first author’s
dissertation [1] in the context of GEP, which was conducted
independently of the work in [13]. In our analysis in Section
III and corresponding numerical verification, we show how
the relaxed CSM is generally inexact in GEP in terms of
storage sizing decisions. We also find, due to the inherent
energy conversion losses modeled in the state-of-charge (SOC)
constraints, allowing simultaneously charging and discharging
in the CSM may lead to lower energy capacities of storage and
therefore lower investment cost, which is considered a main
cause of the aforementioned storage sizing error.

To address renewable energy uncertainty, the two-stage opti-
mization framework, wherein planning and operation decisions
are made in the first and second stages, respectively, has been
used with stochastic programming (SP), robust optimization
(RO), and interval optimization (IO). Incorporating the DSM
in the second stage can bring significant challenges to such
two-stage problems, as traditional separation algorithms rely
on an assumption of convex recourse. As summarized in

1Note complementarity constraints in (9), which will be shown in sec-
tion III, can be added to avoid simultaneously charging and discharging
in the CSM. However, this results in a mixed-integer non-linear model for
GEP. To render the problem tractable, the CSMs in the planning literature
usually do not contain complementarity constraints in (9). Thus, we refer
CSM to the model without complementarity constraints, as shown later
in (8) and (6d)-(6h).

TABLE I
TAXONOMY OF WORKS ON POWER SYSTEM PLANNING WITH STORAGE

planning
works

DSM in the
operation stage

uncertainty
consideration

iteration-free
approach

[4] [5] no (CSM) yes (SP) no
[6] no (CSM) yes (SP) yes
[8] yes yes (SP) no

[7] no (CSM) yes (RO,SP) no

[9] [10] no (DSM with binaries
in the planning stage) yes (RO) no

[11] yes yes (RO) no

this work yes yes (IO) yes

Table I, the CSM is widely used in SP [4]–[6] and RO [7].
Furthermore, binary status variables in the DSM are decided
in the planning stage of RO to guarantee linear program (LP)
recourse [9], [10]. Only a few iterative approaches2 have
been proposed for two-stage optimization with DSM in the
operation stage, such as SP in [8] and RO in [11]. How-
ever, complicated problem formulation and iterative solution
approaches may not be computationally reliable for practical
applications. IO is an appealing iteration-free approach, but
addressing the DSM in the operation stage is challenging.

Early theories on IO [14] guarantee the validity of this
approach on a time-decoupled basis. In [15], [16], time-
coupled ramp constraints of generators are further addressed.
When the DSM is incorporated in GEP in an IO context, two
main challenges are encountered: 1) binary status variables
in the DSM dispute the validity of the theory in [14], which
assumes LP recourse; 2) SOC constraints pose stronger time-
coupling, which is also challenging to address. To tackle these
challenges, a tailored IO approach is proposed for GEP with
DSM in an iteration-free manner. We also show that our
approach can cover all the worst cases in a given uncertainty
set. It is worth mentioning that modeling ambient temperature
impacts [17] and state of health (SOH) [18], [19] for battery
storage would further complicate the planning decision making
under uncertainty, which could be a good research topic to
explore, but is beyond the scope of this work.

In comparison to SO, both IO and RO approaches are be-
lieved to be more secure, but more conservative [16]. Although
the conservativeness can be adjusted by tuning uncertainty set
parameters, an appropriate trade-off between system security
performance and investment cost is usually difficult to achieve.
The approach would be over-conservative when the uncertainty
set is too large, while insecure when the uncertainty set is
too small. To this end, a bi-interval policy is proposed in this
work to address the conservativeness issue by applying distinct
load shedding and renewable curtailment limits to different
confidence intervals. The proposed approach can avoid paying
high investment costs for rarely happened cases.

The main contributions of this work are,
1) We analyze and numerically verify how the relaxed CSM

is generally inexact in terms of storage sizing in GEP. We find

2SP with DSM in the operation stage doesn’t have to be solved in
an iterative manner [6]. However, as SP heavily relies on the quality
and quantity of scenarios, with massive scenarios considered, iterative
approaches are usually needed to address scalability issues.
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allowing simultaneously charging and discharging in the CSM
can lead to lower energy capacities of storage and therefore
lower investment costs, due to the inherent energy conversion
losses modeled in the SOC constraints.

2) A tailored IO approach is proposed to address binary
variables and temporal SOC constraints when the DSM is
used in the operation stage of GEP. Our approach is shown
to cover all worst cases in a given uncertainty set, meanwhile
addressing renewable energy uncertainty in an iteration-free
manner. A bi-interval policy is further designed to reduce
conservativeness.

3) Our approach is tested on Gansu power grid case with
meteorological data for renewable energy resources. Storage
is shown to be an essential option for a low-carbon power
system. The investment cost per unit of energy capacity for
battery storage has a significant impact on the overall cost.

II. PROBLEM FORMULATION

This section describes our problem formulation, however,
we leave the details of IO constraints in section IV for the
convenience of demonstration.

A. Objective Function

The objective function is expressed in (1), which is the sum
of annualized investment cost (term a for generators, term b
for energy storage, and term c for renewable energy sources)
and system operation cost (term d for generators, and term e
for energy storage).

min
∑

i∈Ωng

Xini︸ ︷︷ ︸
term a

+
∑

i∈Ωnes

(αiPi + βiEi)︸ ︷︷ ︸
term b

+

∑
i∈Ωnw

αiPi︸ ︷︷ ︸
term c

+
∑

s∈S

∑
t∈T

τs ·
[∑

i∈Ωg∪Ωng

Cgen
i,s,tpi,s,t︸ ︷︷ ︸

term d

+
∑

Ωnes

(
Cdc

i,s,tp
dc
i,s,t + Cch

i,s,tp
ch
i,s,t

)
︸ ︷︷ ︸

term e

]
(1)

B. Constraints in Planning Scale

1) Generator Constraints: The number of candidate gener-
ators to build is limited in (2a). The annual carbon emission
produced by the system is constrained in (2b) with a one-hour
interval assumption. Maximum capacity factor constraints for
existing and candidate generators are presented in (2c) and
(2d), respectively.

0 ≤ ni ≤ nmax
i ∀i ∈ Ωng (2a)∑

i∈Ωg∪Ωng

∑
s∈S

∑
t∈T

τs · CEi · pi,s,t ≤ CET (2b)∑
s∈S

∑
t∈T

τs · pi,s,t ≤ 8760 · CFi · P i · n̂i ∀i ∈ Ωg (2c)∑
s∈S

∑
t∈T

τs · pi,s,t ≤ 8760 · CFi · P i · ni ∀i ∈ Ωng (2d)

2) Renewable Energy Source and Energy Storage Con-
straints: The power capacities of renewable energy sources
are limited by resource potential, as shown in (3a). For specific
types of energy storage, such as pumped storage, the power
and energy capacities are also limited in (3b). As (6a)-(6b) and
(6g)-(6h) ensure positive values of Pi and Ei, lower bounds
are not modeled in (3b).

0 ≤ Pi ≤ Pmax
i ∀i ∈ Ωnw (3a)

Pi ≤ Pmax
i , Ei ≤ Emax

i ∀i ∈ Ωnes (3b)

C. Constraints in Operation Scale

1) System Constraints: The system power balance con-
straint is described in (4) for each time period.∑

i∈Ωg∪Ωng

pi,s,t +
∑

i∈Ωnes

pi,s,t +
∑

i∈Ωw

wci,s,t · P̂i

+
∑

i∈Ωnw

wci,s,t · Pi = ds,t ∀s, t (4)

2) Generator Constraints: Power output of existing and
candidate generators are bounded in (5a) and (5c), respectively.
Ramp rate constraints are expressed in (5b) and (5d). Tie lines
can be treated as special existing generators, as modeled in
(5c), with P i and P i defined as lower and upper bounds for
net import flows, respectively.

P i · n̂i ≤ pi,s,t ≤ P i · n̂i ∀i ∈ Ωg, s, t (5a)
−RDi · n̂i ≤ pi,s,t+1 − pi,s,t ≤ RUi · n̂i

∀i ∈ Ωg, s, t ∈ T \ {Nt} (5b)

P i · ni ≤ pi,s,t ≤ P i · ni ∀i ∈ Ωng, s, t (5c)
−RDi · ni ≤ pi,s,t+1 − pi,s,t ≤ RUi · ni

∀i ∈ Ωng, s, t ∈ T \ {Nt} (5d)

3) Energy Storage Constraints: Discharging and charging
power levels are bounded in (6a) and (6b), respectively.
A mutually exclusive relation for charging and discharging
statuses is established with binary variables in (6c). With
this constraint, simultaneous charging and discharging, which
would not happen in physical systems, can be avoided. The
net power injections from energy storage are expressed in (6d).
SOC is calculated in (6e) and bounded in (6f)-(6h).

0 ≤ pdc
i,s,t ≤ Pmax

i udc
i,s,t, p

dc
i,s,t ≤ Pi ∀i ∈ Ωnes, s, t (6a)

0 ≤ pch
i,s,t ≤ Pmax

i uch
i,s,t, p

ch
i,s,t ≤ Pi ∀i ∈ Ωnes, s, t (6b)

uch
i,s,t + udc

i,s,t ≤ 1 ∀i ∈ Ωnes, s, t (6c)

pi,s,t = pdc
i,s,t − pch

i,s,t ∀i ∈ Ωnes, s, t (6d)

ei,s,t = (1− δi) · ei,s,t−1 + ηch
i · pch

i,s,t − 1
/
ηdc
i · pdc

i,s,t

∀i ∈ Ωnes, s, t (6e)
ei,s,0 = γi,s,0Ei ∀i ∈ Ωnes, s (6f)

γ
i,s,t

Ei ≤ ei,s,t ≤ γi,s,tEi ∀i ∈ Ωnes, s, t ∈ T \ {Nt} (6g)

γ
i,s,Nt

Ei ≤ ei,s,Nt
≤ γi,s,Nt

Ei ∀i ∈ Ωnes, s (6h)

Note (6a)-(6h) formulate the DSM. Further analysis of using
DSM and CSM in GEP will be presented in section III.
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4) Interval Optimization Constraints: To ensure the system
operational security under renewable energy uncertainty, an IO
approach is proposed with a bi-interval policy. The IO con-
straints are abstractly expressed in (7), and will be described
in section IV in detail.

IOCons (n,P ,E) ≤ 0 (7)

where, n = {ni : ∀i ∈ Ωng}, P = {Pi : ∀i ∈ Ωnw ∪ Ωnes},
and E = {Ei : ∀i ∈ Ωnes}.

III. CONTINUOUS STORAGE MODEL V.S. DISCRETE
STORAGE MODEL: AN ERROR ANALYSIS

As summarized in the introductory section, various power
system planning works use the CSM, in which the mutually ex-
clusive constraints in (6c) or the complementarity constraints
(i.e., pdc

i,s,t · pch
i,s,t=0, ∀i∈Ωnes, s, t) are eliminated. The CSM

simplifies the uncertainty handling process, especially for IO
and RO, as the sub-problem in the operation stage is an LP.
Essentially, the CSM is a relaxation of the DSM, i.e., the
constraints to avoid simultaneous charging and discharging are
relaxed. We observed this relaxation is generally inexact for
GEP and may lead to significant errors in storage capacities.

In this work, the DSM is formulated in (6a)-(6h) as shown
in section II, while the CSM is formulated in (8) and (6d)-(6h).

0 ≤ pdc
i,s,t ≤ Pi, 0 ≤ pch

i,s,t ≤ Pi ∀i ∈ Ωnes, s, t (8)

Suppose the optimal solution from a GEP problem with
DSM be p̃dc

i,s,t and p̃ch
i,s,t, then we have (9).

p̃dc
i,s,t · p̃ch

i,s,t = 0 ∀i ∈ Ωnes, s, t (9)

Now we show the reason of deviating from the solution
p̃dc
i,s,t and p̃ch

i,s,t when the CSM is used. As the charging and
discharging power usually do not reach their limits in all the
time periods, this leaves spaces for them to simultaneously
increase by ∆pi,s,t in the CSM while keeping the network
injection power unchanged. Note the constraints (6e)-(6h) are
equivalent to (10), in which the variables ei,s,t are canceled
for convenience.

γ
i,s,t

Ei ≤ (1− δi)tγi,s,0Ei +
∑t

t′=1
(1− δi)t−t

′
·(

ηch
i · pch

i,s,t′ − 1/η · pdc
i,s,t′

)
≤ γi,s,tEi ∀i ∈ Ωnes, s, t (10)

Applying the updated discharging and charging power of
energy storage (i.e., p̃dc

i,s,t + ∆pi,s,t and p̃ch
i,s,t + ∆pi,s,t,

respectively) to (10), we have (11).∑t

t′=1
(1− δi)t−t

′(
ηch
i · p̃ch

i,s,t′ − 1/ηdc
i · p̃dc

i,s,t′+(
ηch
i − 1/ηdc

i

)
∆pi,s,t′

)
≤
(
γi,s,t − (1− δi)t · γi,s,0

)
Ei

∀i ∈ Ωnes, s, t (11)

It is worth mentioning, ηch
i − 1/ηdc

i is negative as both ηch
i

and ηdc
i are in the range of (0, 1). Simultaneously increasing

both discharging and charging power by ∆pi,s,t can result in
a decrease in the LHS of (11). This can potentially reduce
the optimal energy capacity Ei in the RHS of (11), which is
driven by the benefit of decreasing investment cost term βi ·Ei

for candidate storage in the optimization model.

Fig. 1. Comparison of operation decisions from CSM and DSM.

Note such benefit could also exist even when both discharg-
ing and charging power related terms in the objective function
are positive. In this case, although operation cost of storage
increases by (Cdc

i,s,t + Cch
i,s,t) · ∆pi,s,t in time period t, the

increase of the operation cost in some time periods usually
cannot match the decrease in the investment cost.

We also observe sometimes the increase of power capacity
Pi may help reducing energy capacity Ei. Given a scenario
s∗ and a time period t∗ for which (11) is bind, we have (12)
to analyze how simultaneously increasing both discharging
and charging power by ∆pi,s,t can reduce the size of energy
capacity Ei. In (12), an estimation of energy capacity Ei

reduction is denoted as ∆Ei.

∆Ei ≈
∑t∗

t′=1 (1− δi)t−t
′
·
(
1/ηdc

i − ηch
i

)
·∆pi,s∗,t′

γi,s∗,t∗ − (1− δi)t
∗
· γi,s∗,0

(12)

Meanwhile, the increment ∆pi,s∗,t′ is limited by the power
capacity Pi, as shown in (13).

∆pi,s∗,t′ ≤ min
{
Pi − p̃dc

i,s∗,t′ , Pi − p̃ch
i,s∗,t′

}
∀t′ ≤ t∗ (13)

If the investment cost per unit of power capacity αi for
energy storage is not far greater than its investment cost
per unit of energy capacity βi, the power capacity Pi may
also have potentials to increase. This would result in the
increase of ∆pi,s∗,t′ , and thus the increase of ∆Ei. As ∆Ei is
expressed in an integral form of ∆pi,s∗,t′ for t′ ≤ t∗ in (12),
the cumulative effect may further benefit the aforementioned
simultaneously charging and discharging behavior.

Fig. 1 shows an example of storage operations from GEP
problems with CSM and DSM for the modified IEEE reliabil-
ity test system in section V. As indicated, values of network
injection power from both CSM and DSM are very close,
but simultaneous charging and discharging behavior exists in
the CSM case. This behavior takes advantage of negative
ηch
i − 1/ηdc

i value to decrease the LHS of (11), and thus the
energy capacity Ei. This matches our previous analysis.

IV. INTERVAL OPTIMIZATION APPROACH

In this section, our proposed constraints for IO are presented
first. They are then shown to cover all worst cases in a given
uncertainty set. A bi-interval policy is introduced to reduce
conservativeness.
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A. Interval Optimization Constraints
As stronger time-coupled constraints and binary status vari-

ables are incorporated in the operation stage, we can no longer
directly use the Theorem 6 in [14], which guarantees the worst
case would only occur in two possible uncertainty realizations
under pure LP and time decoupled assumptions. In light of
the method used in [14], we keep two cases in the constraints.
In one case, renewable generation levels reach corresponding
upper bounds simultaneously for all time periods. The related
variables are marked with superscript U. In another case,
renewable generation levels reach corresponding lower bounds
simultaneously, and the related variables are marked with
superscript L. Corresponding to constraints in (4)-(6), the
operation constraints for the aforementioned two cases are
shown in (14a)-(14c), (14e)-(14f), (14i)-(14l), and (14n)-(14q).
In this work, connection constraints between the two cases are
proposed, as shown in (14d), (14g)-(14h), and (14m).

We find the proposed formulation can cover all the worst
cases in the uncertainty set shown in (15), which will be
formally described and proved in the subsection IV-B. Note
a brute force formulation that includes all combinations of
renewable generation levels for each time also has the same
property. In comparison to such formulation, if the connection
constraints (14d), (14g)-(14h), and (14m) are excluded, the
proposed formulation is more loose, because it only considers
two combinations. However, with these connection constraints,
our formulation can cover all the worst cases in the given
uncertainty set. The conservativeness of the proposed tighter
formulation will be discussed in the case study. In compar-
ison to RO, the advantage of the proposed approach lies in
addressing uncertainty in an iteration-free manner.∑

i∈Ωg∪Ωng

p
U(L)
i,s,t +

∑
i∈Ωnes

p
U(L)
i,s,t +

∑
i∈Ωw

wc
U(L)
i,s,t · P̂i

+
∑

i∈Ωnw

wc
U(L)
i,s,t · Pi = ds,t ∀s, t (14a)

P i · n̂i ≤ p
U(L)
i,s,t ≤ P i · n̂i ∀i ∈ Ωg, s, t (14b)

P i · ni ≤ p
U(L)
i,s,t ≤ P i · ni ∀i ∈ Ωng, s, t (14c)

pU
i,s,t ≤ pL

i,s,t ∀i ∈ Ωg ∪ Ωng, s, t (14d)

−RDi · n̂i ≤ p
U(L)
i,s,t+1 − p

U(L)
i,s,t ≤ RUi · n̂i

∀i ∈ Ωg, s, t ∈ T \ {Nt} (14e)

−RDi · ni ≤ p
U(L)
i,s,t+1 − p

U(L)
i,s,t ≤ RUi · ni

∀i ∈ Ωng, s, t ∈ T \ {Nt} (14f)

−RDi · n̂i ≤ p
U(L)
i,s,t+1 − p

L(U)
i,s,t ≤ RUi · n̂i

∀i ∈ Ωg, s, t ∈ T \ {Nt} (14g)

−RDi · ni ≤ p
U(L)
i,s,t+1 − p

L(U)
i,s,t ≤ RUi · ni

∀i ∈ Ωng, s, t ∈ T \ {Nt} (14h)

0 ≤ pdc U(L)
i,s,t ≤ Pmax

i u
dc U(L)
i,s,t , p

dc U(L)
i,s,t ≤ Pi

∀i ∈ Ωnes, s, t (14i)

0 ≤ pch U(L)
i,s,t ≤ Pmax

i u
ch U(L)
i,s,t , p

ch U(L)
i,s,t ≤ Pi

∀i ∈ Ωnes, s, t (14j)

u
ch U(L)
i,s,t + u

dc U(L)
i,s,t ≤ 1 ∀i ∈ Ωnes, s, t (14k)

p
U(L)
i,s,t = p

dc U(L)
i,s,t − pch U(L)

i,s,t ∀i ∈ Ωnes, s, t (14l)

pU
i,s,t ≤ pL

i,s,t ∀i ∈ Ωnes, s, t (14m)

e
U(L)
i,s,t = (1− δi) · eU(L)

i,s,t−1 + ηch
i · p

ch U(L)
i,s,t

−1/ηdc
i · p

dc U(L)
i,s,t ∀i ∈ Ωnes, s, t (14n)

e
U(L)
i,s,0 = γi,s,0Ei ∀i ∈ Ωnes, s (14o)

γ
i,s,t

Ei ≤ eU(L)
i,s,t ≤ γi,s,tEi ∀i ∈ Ωnes, s, t ∈ T \ {Nt} (14p)

γ
U(L)
i,s,Nt

Ei ≤ eU(L)
i,s,Nt

≤ γU(L)
i,s,Nt

Ei ∀i ∈ Ωnes, s (14q)

B. Property of the Formulation

Here we describe and prove a property of the proposed for-
mulation, namely, covering all the worst cases in a predefined
uncertainty set.

Property: Given fixed investment decision variables (i.e.,
ni for generators, Pi for renewable energy sources, and Pi,
Ei for energy storage), if there exists a feasible solution
for constraints in (14), then there exists a feasible solution
for operation constraints in (4)-(6) with any wc ∈ U . The
uncertainty set U is defined in (15).

U =

{
wc ∈ R(|Ωw|+|Ωnw|)·Ns·Nt :
wci,s,t ∈

[
wcLi,s,t, wc

U
i,s,t

]
, ∀i ∈ Ωw ∪ Ωnw, s, t

}
(15)

where, the vector wc = {wci,s,t, ∀i ∈ Ωw ∪ Ωnw, s, t}.
Proof. The proof of the property is organized in two parts.

The first part provides the proof for any wc ∈ U ′. As defined
in (16), U ′ is a subset of U . The second part extends the
uncertainty set from U ′ in the first part to U .

U ′ =


wc ∈ R(|Ωw|+|Ωnw|)·Ns·Nt :
wci,s,t = wcLi,s,t +

(
wcUi,s,t − wcLi,s,t

)
· σs,t

σs,t ∈ B, ∀i ∈ Ωw ∪ Ωnw, s, t

 (16)

1) Proof for U ′: Given the condition that there exists a
feasible solution for constraints in (14), we denote the solution
as in (17)-(19). Note the SOC variables for energy storage, i.e.,
ei,s,t, are not listed here, as they are dependent on charging
and discharging power.

p
U(L)
i,s,t = p̃

U(L)
i,s,t ∀i ∈ Ωg ∪ Ωng ∪ Ωnes, s, t (17)

u
dc U(L)
i,s,t = ũ

dc U(L)
i,s,t , u

ch U(L)
i,s,t = ũ

ch U(L)
i,s,t

∀i ∈ Ωnes, s, t (18)

p
dc U(L)
i,s,t = p̃

dc U(L)
i,s,t , p

ch U(L)
i,s,t = p̃

ch U(L)
i,s,t

∀i ∈ Ωnes, s, t (19)

We assert a feasible solution of constraints (4)-(6) for any
wc ∈ U ′ can be represented in (20)-(22). To prove this, we
need to check if all the constraints in (4)-(6) are satisfied.

pi,s,t =

{
p̃U
i,s,t, if σs,t = 1
p̃L
i,s,t, if σs,t = 0

∀i ∈ Ωg ∪ Ωng ∪ Ωnes, s, t (20)

pdc
i,s,t = max

{
pi,s,t, 0

}
, pch

i,s,t = −min
{
pi,s,t, 0

}
∀i ∈ Ωnes, s, t (21)

udc
i,s,t = max

{
sgn(pi,s,t), 0

}
, uch

i,s,t = 1− udc
i,s,t

∀i ∈ Ωnes, s, t (22)

where, sgn(·) is the sign function.
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The non-temporal constraints in (4), (5a), (5c), and (6a)-(6d)
are trivially satisfied for any wc ∈ U ′ under the given solution.
The temporal constraints, i.e., ramp constraints in (5b), (5d),
and SOC constraints in (10) (i.e., as shown in section III, (6e)-
(6h) can be reformulated as (10)) should be further examined.

As indicated in (20), the value of pi,s,t is either p̃U
i,s,t or p̃L

i,s,t

depending on the value of σs,t. Based on this observation, (23)
can be derived from (14d) and (14m). For energy storage, (24)
can be further derived from (21).

p̃U
i,s,t ≤ pi,s,t ≤ p̃L

i,s,t ∀i ∈ Ωg ∪ Ωng ∪ Ωnes, s, t (23)

p̃dc U
i,s,t ≤ pdc

i,s,t ≤ p̃dc L
i,s,t , p̃ch L

i,s,t ≤ pch
i,s,t ≤ p̃ch U

i,s,t

∀i ∈ Ωnes, s, t (24)

The ramp constraints in (5b) and (5d) are satisfied for any
wc ∈ U ′ under the given solution, as shown in (25). The
inequalities (a) and (d) are ensured by (14g)-(14h), while (b)
and (c) can be obtained from (23).

−RDi · n̂i
(a)

≤ p̃U
i,s,t+1 − p̃L

i,s,t

(b)

≤ pi,s,t+1 − pi,s,t
(c)

≤ p̃L
i,s,t+1 − p̃U

i,s,t

(d)

≤ RUi · n̂i (25)

For the SOC bounds of storage, in (26), (e) and (h) are
established from (14n)-(14q) as shown previously in (10). With
coefficients δi, ηch

i , η
dc
i ∈ (0, 1), (f) and (g) can be obtained

from (24). Thus, for any wc ∈ U ′, constraints (6e)-(6h) is
satisfied under the given solution.

γ
i,s,t

Ei − (1− δi)tγi,s,0Ei

(e)

≤
t∑

t′=1

(1− δi)t−t
′ (
ηch
i · p̃ch L

i,s,t′ − 1/ηdc
i · p̃dc L

i,s,t′
)

(f)

≤
t∑

t′=1

(1− δi)t−t
′ (
ηch
i · pch

i,s,t′ − 1/ηdc
i · pdc

i,s,t′
)

(g)

≤
t∑

t′=1

(1− δi)t−t
′ (
ηch
i · p̃ch U

i,s,t′ − 1/ηdc
i · p̃dc U

i,s,t′
)

(h)

≤ γi,s,tEi − (1− δi)tγi,s,0Ei (26)

Thus, we conclude there exists a feasible solution for
constraints (4)-(6) with any wc ∈ U ′ if (14) is feasible.

2) Proof for U: Our conclusion is then extended from U ′

to U . As shown in (27), the terms related to the net load in
(4) is defined by rs,t.

rs,t = ds,t−
∑

i∈Ωw

wci,s,t · P̂i−
∑

i∈Ωnw

wci,s,t · Pi (27)

For wc ∈ U ′, a set formed by corresponding vector r (we
define r = {rs,t, ∀s, t}) is denoted as V ′. The set of V ′ can
also be represented by enumerating all the values of σs,t in
(16), as shown in (28).

V ′ =

r ∈ RNs·Nt : rs,t = ds,t −
∑

i∈Ωw

wcLi,s,t · P̂i−∑
i∈Ωnw

wcLi,s,t · Pi − σs,t ·
[∑

i∈Ωw

(
wcUi,s,t − wcLi,s,t

)
·

P̂i +
∑

i∈Ωnw

(
wcUi,s,t − wcLi,s,t

)
· Pi

]
, σs,t ∈ B, ∀s, t



= {v1, v2, ..., v2Ns·Nt} (28)

Analogously, for any wc ∈ U , the corresponding r forms a
set of V . As a matter of fact, V extends the binary variable
σs,t in V ′ to a range of [0, 1]. It can be represented by a convex
combination form based on vertices of V ′, as shown in (29).
In this case, V is the convex hull of V ′.

V =
{
w ∈ RNs·Nt : w =

∑2Ns·Nt

k=1 αkvk,∑2Ns·Nt

k=1 αk = 1, αk ≥ 0
}

(29)

For any wc ∈ U (i.e., w ∈ V ), a feasible solution of
constraints (4)-(6) can be represented in (30)-(32), wherein
p

(k)
i,s,t represents a solution of injection power in the k-th

combination of σs,t.

pi,s,t =
∑2Ns·Nt

k=1
αkp

(k)
i,s,t ∀i ∈ Ωg ∪ Ωng ∪ Ωnes, s, t (30)

pdc
i,s,t = max

{
pi,s,t, 0

}
, pch

i,s,t = −min
{
pi,s,t, 0

}
∀i ∈ Ωnes, s, t (31)

udc
i,s,t = max

{
sgn

(
pi,s,t

)
, 0
}
, uch

i,s,t = 1− udc
i,s,t

∀i ∈ Ωnes, s, t (32)

The non-temporal constraints (4), (5a), (5c), and (6a)-(6d)
can also be trivially verified. With the convex combination
property in (29) and (30), equations (23) and (24) still hold.
In a similar manner to the previous proof, ramp constraints
(5b), (5d), and SOC constraints (10) can also be verified.

The property shown in this subsection ensures that any
investment decision satisfying constraints (14) can cover all the
cases in the uncertainty set in (15). Meanwhile, our approach
is iteration-free, and the number of constraints keeps on a
moderate size to avoid the curse of dimensionality.

C. Bi-Interval Policy
To reduce the conservativeness of the planning problem, a

bi-interval policy is further proposed in this subsection.
1) Framework Description: If load shedding and renewable

power curtailment are not allowed, the resultant investment
decision that can address all possible cases might be expensive,
as a large portion of the high investment cost might be paid
for rarely happened cases. To tackle this, we define an inner
interval based uncertainty set for cases that commonly happen,
while all the possible cases including those rarely happen
are incorporated in an outer interval based uncertainty set.
Distinct operation rules are applied for these two sets. For
convenience, IO constraints for the inner set [wcL, wcU] are
presented in (14). We define the outer set as [wcEL, wcEU].
The corresponding IO constraints are shown later in (33).

Different load shedding and renewable power curtailment
policies are applied for the two sets:

a. For the inner interval based uncertainty set, as only nor-
mal scenarios are incorporated, load shedding is not allowed
to achieve a reliable power supply, and renewable energy
curtailment is also not encouraged according to Article 14 of
Renewable Energy Law of China [20].

b. For extreme cases in the outer interval based uncertainty
set, the system security is the most critical concern. Load
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shedding is subject to Regulations on Emergency Handling,
Investigation and Disposal of Electric Power Safety Accidents
in China [21], which restricts shedding proportions for various
types of power systems. Renewable energy curtailment is also
considered an emergency control measure for such cases.

The bi-interval policy has the advantage of guaranteeing
system power balance in any possible cases, and preventing
load shedding and renewable power curtailment in most com-
mon cases. This design aims to avoid paying a high price
for rarely happened cases, therefore a better trade-off between
system security and investment cost could be achieved.

2) IO Constraints for the Outer Interval Based Uncertainty
Set: After taking load shedding and renewable power cur-
tailment limits into consideration, the constraints for the outer
interval based uncertainty set are presented in (33). In fact, the
key differences lie in the system balance constraints in (33a),
renewable power curtailment limits in (33b), and load shedding
limits in (33c). Similarly, it can also be proved investment
decisions that satisfy constraints (33) can cover all the cases
in the given outer interval based uncertainty set.∑

i∈Ωg∪Ωng

p
EU(EL)
i,s,t +

∑
i∈Ωnes

p
EU(EL)
i,s,t

= ds,t − d
s EU(EL)
s,t −

(∑
i∈Ωw

wc
EU(EL)
i,s,t · P̂i

+
∑

i∈Ωnw

wc
EU(EL)
i,s,t · Pi − w

c EU(EL)
s,t

)
∀s, t (33a)

0 ≤ wc EU(EL)
s,t ≤

∑
i∈Ωw

wc
EU(EL)
i,s,t · P̂i +∑

i∈Ωnw

wc
EU(EL)
i,s,t · Pi ∀s, t (33b)

0 ≤ ds EU(EL)
s,t ≤ ϕ · ds,t ∀s, t (33c)

Eq. (14b)-(14q) with subscripts U(L) replaced by EU(EL)
(33d)

Finally, the overall problem is formulated in a non-iterative
mixed-integer linear program (MILP) with objective function
(1) and constraints (2)-(7). The detailed formulation for (7) is
expressed in constraints (14) and (33).

V. CASE STUDY

A modified IEEE 24-bus reliability test system (RTS) and a
real-world Gansu provincial power grid in China are used to
test the proposed approach. The MILP problems in this paper
were solved by Cplex 12.8 [22] on a computer with dual Intel
Xeon CPU E5-2650 and 128GB RAM.

A. Modified IEEE 24-Bus Reliability Test System: Verifi-
cation of the Proposed Approach

The IEEE RTS [23] contains 32 generators with 3405 MW
of total installed capacity. For planning purposes, the demands
are assumed as 2 times their original values. Wind and pho-
tovoltaic (PV) power stations are also included as investment
candidates. The data for existing and candidate generators is
from [23], [24]. The results of generation expansion planning
are shown in Fig. 2 under different carbon emission targets. As
indicated, the capacity and share of renewable energy sources

(a)

(b)

(c)

Fig. 2. Planning results for IEEE RTS: (a) generation mix, (b) energy
capacity of storage, (c) share of non-hydro renewable energy sources
and non-fossil fuel energy sources.

generally increase as the emission limit decreases. This leads
to stronger requirements for energy storage on shaving the
peak load and storing surplus renewable energy. Therefore,
larger storage capacities are shown in the GEP decisions with
lower carbon-emission limits. Our method to choose an inner
interval based uncertainty set for this case is provided in
supplementary material [25].

1) Numerical Error Analysis for the CSM: In this work,
the CSM is implemented in (8) and (6d)-(6h). Comparisons
of storage investment decisions from both DSM and CSM
are shown in Table II. As indicated, the CSM results in
a considerable amount of error in both power and energy
capacities for energy storage, especially when the penetration
of renewable energy is high. We observe the energy capacity

TABLE II
ERROR ANALYSIS FOR CSM IN IEEE RTS

CO2 emission limit
(106 tons) 0 1 2 3 4

power
capacity
(MW)

DSM 1163.6
(46.3%)

1058.4
(91.9%)

757.5
(100.0%)

285.2
(88.6%)

16.5
(100.0%)

CSM 2514.1
(100.0%)

1151.8
(100.0%)

709.9
(93.7%)

322.0
(100.0%)

7.7
(46.5%)

energy
capacity
(MWh)

DSM 14518.9
(100.0%)

4951.6
(100.0%)

2245.0
(100.0%)

758.5
(100.0%)

15.2
(100.0%)

CSM 8516.3
(58.7%)

3888.9
(78.5%)

1891.4
(84.2%)

550.7
(72.6%)

7.1
(46.5%)
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TABLE III
INVESTMENT COST COMPARISON OF SP, RO AND IO IN IEEE RTS

method
# of scenarios

considered
in SP

investment cost (109$)

conventional
generators

renewable
energy stations

energy
storage total

SP

1 1.69 24.56 0.95 27.19
10 1.69 23.99 2.30 27.99
20 1.69 23.98 2.52 28.20
30 1.69 23.98 2.52 28.20

RO - 2.18 24.13 143.44 169.75

IO (w/o BIP) - 2.18 24.13 143.44 169.75
IO (w/ BIP) - 2.89 23.67 4.50 31.06

TABLE IV
MCS-BASED COMPARISON OF SP, RO, AND IO SOLUTIONS IN IEEE

RTS

method
# of scenarios

considered
in SP

# of MCS samples with
renewable curtailment

or load shedding

expected operation
cost for feasible samples

(107$)

SP

1 905 (90.5%) 4.45 (95 samples)
10 109 (10.9%) 4.54 (891 samples)
20 46 (4.6%) 4.54 (954 samples)
30 46 (4.6%) 4.54 (954 samples)

RO - 0 (0%) 5.00 (1000 samples)

IO (w/o BIP) - 0 (0%) 5.00 (1000 samples)
IO (w/ BIP) - 1 (0.1%) 4.75 (999 samples)

from CSM is less than that from DSM, which would reduce
the investment cost term βi · Ei in the CSM cases. Fig. 1
in section III shows simultaneous charging and discharging
behavior exists when using the CSM in GEP. The simulation
results in Table II also match with our analysis in section III.

2) Comparison to Robust and Stochastic Approaches: The
proposed IO approach is compared to SP and RO with DSM
in the operation stage. Monte Carlo simulations (MCS) with
1000 samples are performed to evaluate operating performance
under given investment decisions. For this test system, wind
and PV generation levels are assumed to follow Weibull [26]
and Beta [27] distributions, respectively.

Table III shows the investment cost for IEEE RTS from
different approaches under 2 × 106 tons CO2 emission limit.
The after-fact evaluation of system security and expected
operation cost is presented in Table IV. As indicated in Table
IV, in comparison to the proposed approach, the investment
decision from SP leads to more MCS samples with renewable
curtailment or load shedding, which is considered less secure.
Although the security level can be improved with more sce-
narios included in SP, it would be computational intractable
to incorporate all scenarios. RO and IO based approaches are
both secure as indicated in Table IV. However, as shown in
Table III, they are more expensive in terms of investment cost.
Our proposed IO together with bi-interval policy (denoted as
“w/ BIP” in Tables III and IV) can reduce the overall cost,
meanwhile maintaining a high system security level.

In addition, we can observe that the IO without bi-interval
policy (denoted as “w/o BIP” in Tables III and IV) performs
almost the same with RO in both cost and security level.
Although the IO (without bi-interval policy) formulation is
theoretically tighter than RO as analyzed in section IV, its

95 100 105
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(a)

95 100 105

34

38

42

(b)

Fig. 3. Geographical distributions of maximum capacity factors for wind
and PV systems: (a) wind, (b) PV.

practical performance almost matches that of RO in conser-
vativeness. In addition, RO with DSM in the operation stage
usually needs to be implemented in a nested iterative approach
[11], while our proposed approach is iteration-free.

B. Gansu Power Grid: Prospects of Energy Storage

1) Data Settings: Located in northwest China, Gansu
province has abundant wind and solar resources. The resource
potentials and normalized available generation curves for
renewable energy sources are estimated based on the methods
in [28]–[31]. In detail, the digital elevation model (DEM) and
land use data are from [32], [33], and the meteorological
data for wind and solar resources are from ERA5 [34] and
MERRA-2 [35], respectively. The geographical distributions
of maximum capacity factors for wind and PV systems are
shown in Fig. 3. Sites with high maximum capacity factors are
selected as candidates. Candidate generators for this planning
problem include coal-fired and gas-fired generators. Economic
resources for conventional hydro generators have almost been
fully developed, so conventional hydro generators are not
considered candidates. The technological types for energy
storage candidates are pumped storage and carbon-lead (PbC)
battery storage. The details of choosing an inner interval based
uncertainty set for this case are also provided in [25].

2) Summary of Method Verification: Error analysis on bat-
tery storage sizing for using the CSM in GEP is conducted for
the Gansu system. As shown in Table V, the comparison again
verifies that the CSM usually results in significant errors in
energy capacity investment decisions for storage. The energy
capacity from the CSM is also less than that from the DSM.

TABLE V
ERROR ANALYSIS FOR CSM IN GANSU POWER GRID

CO2 emission limit
(107 tons) 0 3 6 9

power
capacity
(MW)

DSM 48014.7
(25.8%)

22614.7
(59.9%)

8675.2
(100.0%)

550.2
(100.0%)

CSM 186406.8
(100.0%)

37736.5
(100.0%)

8397.6
(96.8%)

550.1
(100.0%)

energy
capacity
(MWh)

DSM 548718.7
(100.0%)

103954.0
(100.0%)

30987.4
(100.0%)

504.3
(100.0%)

CSM 191628.9
(34.9%)

74943.0
(72.1%)

28659.4
(92.5%)

504.1
(100.0%)
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(a)

(b)

Fig. 4. Planning results for Gansu power grid: (a) generation mix, (b)
energy capacity of energy storage.

Leveraging negative ηch
i − 1/ηdc

i value in (11), the investment
cost term βi · Ei is reduced in the CSM case. Note although
the storage capacity difference is not large in the case of
9 × 107 tons emission limit, the energy capacity from the
CSM is still smaller. The numerical results also match with our
analysis in section III. To evaluate the security performance
of the proposed IO (with bi-interval policy) approach, Monte
Carlo simulations are also conducted. As a result, all the 1000
generated cases pass the operational feasibility test.

3) The Role of Energy Storage: The generation mix and
storage capacity are shown in Fig. 4 under different emission
targets. The capacity of renewable energy sources increases
with the decrease of CO2 emission limit, making the fluc-
tuations of the power supply more significant. This leads to
stronger requirements for energy storage on shaving the peak
load and storing surplus renewable energy, thus larger storage
capacities are shown in the GEP decisions. The GEPs are
also solved without energy storage candidates for comparisons,
which comes out with infeasibilities of the optimization prob-
lems for listed cases with emission limits less than 9 × 107

tons. This indicates energy storage is an essential option for a
low-carbon power system.

Given the price for battery storage is expected to decrease
in the future, a sensitivity analysis is performed to assess the
impact of storage investment cost on the generation mix and
the overall cost. Taking the case of zero carbon emission in
the operation phase as an example, the cost per unit of power
capacity α and the cost per unit of energy capacity β are
the coefficients used to analyze. As indicated by the results
of sensitivity analysis in Fig. 5, the overall cost decreases as
both the cost per unit of power capacity α and the cost per
unit of energy capacity β decrease. However, as shown in Fig.
5e, β has a more significant impact on the generation mix, the
storage capacity, and the overall cost. Thus, reducing the cost
per unit of energy capacity for battery storage is a critical
factor to realize a high renewable energy penetrated system.

(a)

(b)

(c)

(d)

(e)

Fig. 5. Sensitivity analysis for coefficients of energy storage: (a) genera-
tion mix under different α, (b) energy capacity of storage under different
α, (c) generation mix under different β, (d) energy capacity of storage
under different β, (e) the overall cost under different α and β.

VI. CONCLUSION

This paper proposes a bi-interval policy embedded IO
approach for GEP with DSM in the operation stage. The main
findings in this work are,

1) The CSM could result in simultaneous charging and
discharging, which could benefit the energy capacity related
term of investment cost in GEP, due to the inherent energy
conversion losses modeled in the SOC constraints.
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2) Given the DSM is incorporated in the operation stage, the
proposed IO approach can cover all the cases in a pre-specified
uncertainty set. Numerical results show IO (without bi-interval
policy) performs almost the same as RO in conservativeness.
In comparison to SO and RO, the proposed IO together with
bi-interval policy can effectively reduce the investment cost,
while maintaining a high system security level.

3) Energy storage is shown to be an essential option for a
low carbon future in Gansu power grid. The investment cost
per unit of energy capacity of battery storage has a significant
impact on the overall system cost.

For future works, the proposed approach can be extended to
incorporate LP approximated unit commitment constraints. In
addition, as only the short-term system operation security is
guaranteed under renewable energy uncertainty in this work,
the effect of uncertainty on the long-term carbon emission
target can be further investigated.
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