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ABSTRACT Purely financial players without any physical assets can participate in day-ahead electricity
markets as virtual bidders. They can arbitrage the price difference between day-ahead (DA) and real-time
(RT) markets to maximize profits. Virtual bidders encounter various monetary risks and uncertainties in
their decision-making due to the high volatility of the price difference. Therefore, this paper proposes a
max-min two-level optimization model to derive the optimal bidding strategy of virtual bidders. In this
model, the risks of uncertainties associated with the rivals’ strategies and RT market prices are managed
by robust optimization. The proposed max-min two-level model is turned into a single-level mixed integer
linear programming model through duality theory (DT), strong duality theory (SDT), and Karush-Kuhn-
Tucker (KKT) conditions. An illustrative case is designed to demonstrate the advantages of the proposed
model over the deterministic model. Moreover, case studies on the IEEE 24-bus test system validate the
applicability of the proposed model.

INDEX TERMS Bidding strategy, duality theory, robust optimization, uncertainty, virtual bidding.

NOMENCLATURE
A. SETS AND INDICES
t Index for time periods.
i Index for virtual participants.
j Index for generating units.
b Index for generation blocks.
d Index for demands.
k Index for demand blocks.
l Index for transmission lines.
�, 4 Decision variable sets for the upper/lower level

subproblems, respectively.
0 Uncertain variables set.
8 Dual variables set for the lower-level subproblem.

B. PARAMETERS

λRTtn Predicted real-time price at time t at bus n.
P̄Gtjb Predicted capacity of unit j of the other

generating units at time t .
P̄Dtdk Predicted demand d at time t .

λGtjb Predicted marginal cost of unit j of the other
generating units at time t .

λDtdk Predicted marginal utility of demand d at
time t .

ζRTn Robustness parameter of RT price at bus n.
σGjb , σ

D
dk Robustness parameter of offered/bid quantities

of block b of other MPs j and block k of
demand d .

τGjb , τ
D
dk Robustness parameter of offered/bid prices of

block b of other MPs j and block k of demand d.
V budget
ti maximum amount of generation/consumption of

virtual participant i at time t .
C̄l Transmission capacity of line l.
Hnl Power transfer distribution factor (PTDF).

C. VARIABLES

αbidGti , αbidDti Bid Price of virtual participant generation/
consumption at time t .

V bidG
ti ,V bidD

ti Bid generation/consumption quantity of
virtual participant i at time t .
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VDAg
ti ,VDAd

ti Cleared generation/consumption quantity
of virtual participant i at time t .

PGtjb Cleared power produced by unit j of the
other generating units at time t .

PDtdk Cleared power consumed by demand d at
time t .

1λRTtn Deviation in prediction of real-time LMP.
1PGtjb,1P

D
tdk Variation of the forecasted offered/bid

generation/demand quantities.
1λGtjb,1λ

D
tdk Variation of the forecasted offered/bid

generation/demand prices.
Ugti,Ud ti Binary Variables represent the virtual

generation or load.

D. DUAL VARIABLES
λDAtn Generation-demand equilibrium at time t at

bus n (in DA market).
µV
ti

Minimum bid quantity of virtual bidder i at
time t .

µ̄Vti Maximum bid quantity of virtual bidder i at
time t .

µG
tjb

Minimum generation of block b of unit j at

time t .
µ̄Gtjb Capacity of unit j at time t .
µD
tdk

Minimum load power of demand d
at time t .

µ̄Dtdk Maximum load power of demand d at time t .
ϑ tl Line l capacity at time t and negative way.
ϑ tl Line l capacity at time t and positive way.
ρ, η, θ, χ Lagrangian coefficients of the lower-level

optimization constraints.

I. INTRODUCTION

V IRTUAL traders, or virtual bidders, are purely financial
participants in the electricity market, who can submit

their bids/offers into the day-ahead (DA) market without the
compulsion to consume/produce the actual power in the real-
time (RT) market. In recent years, these transactions which
are designed as decrement bids (DECs) or increment offers
(INCs), have been considered as part of the electricity market
design [1].

Virtual bids contributed around 6% of all transactions
in the Midwest Independent Transmission System Opera-
tor (MISO) in 2010 and 2011 [2], and are generally employed
to decrease the gap between the DA and RT markets’ prices
and increase the liquidity of the markets. The values of vari-
ous flexible resources, including virtual bids, were evaluated
in [3] through four different two-settlement market-clearing
models, and it is confirmed that the errors of deterministic
DA scheduling can be amended by virtual bids. The advan-
tages and disadvantages of virtual bids in electricity market
environments have been summarized in [4], which stated that
besides the benefits of virtual bids, they may increase the
risks for market manipulation in some parts of the system.

A model reported in [5] presents the motivations for mar-
ket participants (MPs) to place virtual bids at the specific
buses which are tied to the financial transmission right (FTR)
position owned by the MPs. It is shown that deliberate non-
optimal virtual bids to manipulate market prices increase
the price difference between DA and RT markets, and thus,
create market inefficiencies. To analyze the MP’s cross-
product manipulation in three sequential markets, a three-
stage stochastic game theoretic model has been presented
in [6], which applied the numerical simulation to evaluate
the influence of this manipulation on price convergence in
a two-bus system. An algorithmic trading strategy for virtual
bids in power markets using a data-driven approach has been
presented in [7]. To optimize the submitting virtual bids,
a mixture density network (MDN) model was utilized to
predict the price differences between the DA and RTmarkets.
Authors in [8] employed virtual bidding to accommodate the
PV solar power producers to optimize their bidding strategies
in the electricity market environment, and it is declared that
virtual bidding may provide additional risk for risk-taker PV
producers. Although multiple works have been done on vir-
tual bids to present the strengths and weaknesses of utilizing
these transactions, very limited works has been carried out
to study the bidding strategy of this newer type of market
participants [9].

In the restructured electricity system, strategic bidding
helps MPs to improve their behaviors and maximize their
payoffs. The existing approaches for bidding strategy design
differ for the price-taker and price-maker MPs. Price-taker
MP, whose action does not alter the market outcomes, models
the market with the DA market price prediction to opti-
mize its bidding behavior [10], [11]. However, price-maker
MP requires a more complicated methodology to design its
strategy since its actions impact the market outcomes, thus,
it needs to model the rival MPs as well as the market clearing
process. [12] applied a MILP model to address the offering
strategy problem for a price-maker generator who participates
in a DA electricity market in which two distinct methods,
based on the nodal and shift factor formulation, were used to
model the transmission system. The binary expansionmethod
is employed in [13] to solve the bi-level bidding strategy
problem with stepwise offers for the price-maker generator.

In almost all methods existent for the bidding strategy
design, there are various uncertainty sources, such as mar-
ket prices, demand, rivals’ strategies, and renewable energy
generations, that impact the bidding strategy. The uncertain
behavior of rival generators and consumers were modeled
probabilistically in [14] and, to find the optimal offering
strategy of the price-maker MP, Monte Carlo simulation
was employed to compute the expected profit. To derive the
optimal bidding strategy for a strategic generation company,
a stochastic bi-level optimization problem has been mod-
eled in [15], which modeled the uncertainties of consumers’
bids and rival generators’ offers through multiple scenarios.
In [16], a self-scheduling model is employed to design the
bidding strategy of price-maker energy storage and evaluate
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the potential arbitrage benefits of these resources in the
Alberta electricity market using the historical hourly demand
and generation price quota curves (DPGCs and GPDCs).
To capture the optimal offering decisions of a strategic wind
power producer in the DA and balancing markets, a two-stage
stochastic model is presented in [17], in which scenario-based
modeling is applied to model the uncertainties associated
with the wind productions, other players’ behaviors, and mar-
ket price. Optimal bid prices and quantities of a generating
company are derived in [18] using a self-organizing hierarchi-
cal particle swarm optimization, in which a risk index based
on mean-standard deviation ratio (MSR) is optimized, and
Monte Carlo simulation is applied to mimic the other MPs’
behaviors in the electricity market.

Among all current methods for addressing the uncertain-
ties, robust optimization (RO), which is independent of the
probability distribution function (PDF) of the parameters and
assumes uncertain intervals around the predicted parameters,
has become an appropriate choice for studies with high level
of uncertainties and insufficient data for an accurate forecast
of PDFs. Recently, the RO method has been widely used
for the bidding strategy design problems. A two-stage RO
method is utilized in [19] to design the offering strategy of
a price-taker virtual power plant (VPP) consisting of a wind
power producer, energy storage, and a number of demands
taking part in the DA and RT markets. To obtain the optimal
strategies of wind power producer and wind-storage aggrega-
tor, who are assumed to act as price-makers in the DAmarket
and as deviators in the balancing market, [20, 21] presented
a multi-stage distributionally RO (DRO) model and its value
was confirmed by the different case studies performed on the
modified Swiss system and Nordpool. To address the uncer-
tainties associated with wind power generation and loads,
and to obtain the optimal behavior of a virtual power plant,
a stochastic adaptive RO method has been presented in [22].
The optimal bidding strategy of a hybrid power plant, which
acts as a price-maker in the DA market and a price-taker in
the balancing market, has been derived in [23]. It addressed
the uncertainty of the price quota curve (PQC) with the
RO. [24] utilized the bi-level RO model to optimally design a
plug-in electric vehicle (PEV) charging station, in which the
lower-level problem modeled the strategic behavior of PEV
owners. The optimal bidding curve of a price-maker energy
storage facility in the DA market was captured in [25], which
employed the robustly modeled generation and demand price
quota curves to consider the effect of the energy storage
power on market prices. The optimal behavior of a price-
maker microgrid aggregator (MGA) using a RO model to
address the uncertainties related to renewable generation was
presented in [26] and showed that the presented model can
improve the MGA profits.

In this paper, we proposed the max-min two-level opti-
mization model for the purely financial player who plays
either generation or load in the DA market. The virtual bid-
der’s payoff is maximized in the upper-level subproblem, and
the market-clearing procedure is modeled in a lower-level

subproblem. In order to avoid the difficulties facing stochastic
optimization, such as the expensive computation and the
dependency on accurate predictions of the PDFs of uncertain
parameters [27], the RO approach is employed in this paper
to model the uncertainties of other MPs’ offers/bids and RT
market prices. Also, the RO approach can guarantee feasi-
bility in all scenarios, while stochastic optimization cannot.
The proposedmodel is turned into its equivalent linear single-
level problem employing the KKT conditions, duality theory,
and strong duality theory (SDT). Thus, themain contributions
of this paper are twofold:

1) It is the first work to employ robust optimization to
develop a day-aheadmarket bidding strategy for purely finan-
cial virtual bidders. The proposed model allows the virtual
bidder to maximize its profit by considering its flexibility of
being either generation or load at different locations of the
system. Robust optimization is used to handle the uncertain-
ties associated with other players’ offer/bids (quantity and
price) and RT market LMPs.

2) Based on the KKT conditions, SDT and big-M method,
the proposed max-min two-level model is equivalently lin-
earized and transformed into a mixed-integer linear program
(MILP), making it solvable by accessible commercial solvers.

The rest of this paper is organized as follows: Section II
introduces virtual bidding and its impact on DA market
prices. Section III presents the proposed robust two-level
and its corresponding MPEC models. Section IV provides
an illustrative example. Case study results are discussed in
Section V, and Section VI presents the conclusion.

II. ROBUST BIDDING STRATEGY FOR VIRTUAL BIDDER
A. VIRTUAL BIDDING
Virtual bidders, also known as virtual arbitragers, may have
no physical assets and can participate in energy transactions
in the DA market. If a virtual bidder is cleared by the ISO
to buy (or sell) energy in the DA market for certain time
periods, in the ISO two-stage settlement it will be automati-
cally considered to sell (or buy) the same amount of energy
in the RT market for the same time periods. As discussed
in [9], virtual bidders can improve the market’s ability to
manage the forecast errors by increasing the liquidity of the
market.

Assuming that a virtual bidder predicts the RT price to be
higher than the predicted DA price, there will be an oppor-
tunity for the virtual bidder to arbitrage between the DA and
RT markets by buying a certain amount of energy in the DA
market at a DA market price and selling the same amount of
energy in the RT market at a RT market price. As a result
of this virtual bidder participation, the DA market price may
increase due to the increased load cleared in the DA market.
Consequently, the difference between DA and RT prices may
become smaller, as illustrated in Fig. 1. Therefore, virtual
bidder participation in energy markets may reduce the price
gap between DA and RT markets, which is considered an
improvement in market convergence.
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FIGURE 1. The effect of virtual transactions on DA price and
DA/RT price difference.

FIGURE 2. Proposed two-level model.

B. MODEL STRUCTURE
The upper-level subproblem of the proposed two-level
approach represents the profit maximization of a virtual
bidder, whose decisions (virtual bid quantity and price
(V bid

ti , αbidti )) are then passed to the lower-level subprob-
lem. The lower-level subproblem represents the quasi market
where energy and market prices are cleared on an hourly
granularity on a daily basis. The market results (i.e., cleared
virtual quantity and market price (VDA

ti , λ
DA
tn )) are fed back

to the upper-level subproblem, which provides a closed loop
response of the virtual bidder decision on market price
(Fig. 2).

To optimize its decision, the virtual bidder needs to con-
sider various parameters, including the quantities and prices
of other generators’/loads’ offers/bids, as well as RT market
prices. All these parameters play a critical role in the virtual
bidder’s ultimate payoff. For instance, the DA market price,
which is utilized by virtual bidder to estimate its DA profit,
may alter as a result of various rivals’ offers/bids. Further-
more, the RT price assists the virtual bidder in evaluating
the DA profit vs. the RT profit and deciding whether to
be virtual generation or virtual demand in the DA market.
As these parameters are unknown to the virtual bidder, they

need to be forecasted or estimated. However, making a pre-
cise prediction is practically impossible. Therefore, to con-
sider the risks of the forecasted uncertainty sources, a robust
optimization approach is employed in this paper, which is
widely applied by the risk-averse market participants [28].
In this approach, a confidence interval needs to be introduced
around an uncertain parameter, then the worst-case scenario
of uncertain circumstances within this permissible limit is
assessed [25]. Therefore, the proposed max-min two-level
optimization model can be formulated as follows.

C. PROPOSED ROBUST OPTIMIZATION MODEL
1) UPPER-LEVEL
Maximize the Profit (Model (1))

Min
�

Max
0

∑
t

∑
(i∈ψn)

[
λDAtn −

(
λRTtn +1λ

RT
tn

)]
(VDAg

ti − VDAd
ti )

(1a)

Subject to:

0 ≤ V bidG
ti ≤ V budget

ti Ugti, ∀t, ∀i (1b)

0 ≤ V bidD
ti ≤ V budget

ti Ud ti, ∀t, ∀i (1c)

Ugti + Ud ti ≤ 1, ∀t,∀i (1d)

αbidGti ≥ 0, αbidDti ≥ 0, ∀t, ∀i (1e)

−ζRTn λRTtn ≤ 1λ
RT
tn ≤ ζ

RT
n λRTtn (1f)

−σGjbP̄
G
tjb ≤ 1P

G
tjb ≤ σ

G
jb P̄

G
tjb (1g)

−σDdk P̄
D
tdk ≤ 1P

D
tdk ≤ σ

D
dk P̄

D
tdk (1h)

−τGjbλ
G
tjb ≤ 1λ

G
tjb ≤ τ

G
jbλ

G
tjb (1i)

−τDdkλ
D
tdk ≤ 1λ

D
tdk ≤ τ

D
dkλ

D
tdk (1j)

2) LOWER-LEVEL
Quasi Day Ahead Market (Model (2))

Min
4

∑
t

(∑
i

(αbidGti VDAg
ti − αbidDti VDAd

ti )

+

∑
j

∑
b

(λGtjb +1λ
G
tjb)P

G
tjb

−

∑
d

∑
k

(λDtdk +1λ
D
tdk )P

D
tdk

)
4 = {VDAg

ti ,VDAd
ti ,PGtjb,P

D
tdk} (2a)

Subject to:∑
i

(VDAg
ti − VDAd

ti )+
∑
j

∑
b

PGtjb

=

∑
d

∑
k

PDtdk , : λ
DA
tf , ∀t (2b)

0 ≤ VDAg
ti ≤ V bidG

ti : µVg
ti
, µ̄

Vg
ti , ∀t,∀i (2c)

0 ≤ VDAd
ti ≤ V bidD

ti : µVd
ti
, µ̄Vdti , ∀t, ∀i (2d)

0 ≤ PGtjb ≤ P̄
G
tjb +1P

G
tjb : µ

G
tjb
, µ̄Gtjb, ∀t, ∀j, ∀b

(2e)
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0 ≤ PDtdk ≤ P̄
D
tdk +1P

D
tdk : µ

D
tdk
, µ̄Dtdk , ∀t, ∀d, ∀k

(2f)

−C̄l ≤
∑
n

Hnl

 ∑
(i∈ψn)

(VDAg
ti − VDAd

ti )

+

∑
(j∈ψn)

∑
b

PGtjb −
∑
(d∈ψn)

∑
k

PDtdk

 ≤ C̄l
: ϑ tl, ϑ tl ∀t, ∀l (2g)

λDAtn = λ
DA
tf −

∑
l

Hnl
(
ϑ tl − ϑ tl

)
, ∀t, ∀n (2h)

As it is seen in Model (1), the objective function of
the virtual bidder is maximized regarding to its main vari-
ables � =

{
αbidGti ,V bidG

ti , αbidDti ,V bidD
ti ,Ugti,Ud ti

}
and

minimized with respect to the uncertain parameters 0 =
{1λRTtn ,1P

G
tjb,1P

D
tdk ,1λ

G
tjb,1λ

D
tdk}. Constraints (1b) and

(1c) set the maximum bounds for the virtual bids (gener-
ation/demand). Constraint (1d) guarantees that virtual gen-
eration and demand cannot be submitted to the DA market
simultaneously. Uncertain parameters are limited in (1f) – (1j)
by means of corresponding confidence intervals. The robust
parameters ζRTn , σGjb , σ

D
dk , τ

G
jb , and τ

D
dk are determined by

the virtual bidder and used as known parameters to measure
the length of uncertain range around the predicted values.
Note that the correlation between uncertain variables can be
reflected in the corresponding bounds in this model. Further-
more, the model is flexible to take into account size-varying
bounds of uncertain variables for different time periods.

It is worth mentioning that this paper focuses on the most
influential uncertainties (such as predicted RT price, rivals’
offers/bids) for the bidding strategy problem. Other events
with low probabilities, such as unplanned outages of generat-
ing units and transmission branches, are ignored in this work.

Model (2) represents the lower-level subproblem which is
linear since the ISO takes αbidGti and αbidDti and V bidG

ti and
V bidD
ti as parameters. Therefore, it can be substituted by its

KKT conditions. Combining these equivalenced constraints
in the upper-level subproblem results in aMathematical Prob-
lemwith EquilibriumConstraint (MPEC), whose formulation
is as follows.

III. EQUIVALENT MILP FORMULATION
A. MPEC MODEL (Model 3)

Min
�

Max
0

∑
t

∑
(i∈ψn)

(
λDAtn −

(
λRTtn +1λ

RT
tn

))
(VDAg

ti − VDAd
ti )

(3a)

Subject to:

Constraints (1b)-(1j) (3b)

αbidGti − λDAtn + µ̄
Vg
ti − µ

Vg
ti

= 0, ∀t, ∀i ∈ ψn (3c)

−αbidDti + λDAtn + µ̄
Vd
ti − µ

Vd
ti

= 0, ∀t, ∀i ∈ ψn (3d)

λGtjb +1λ
G
tjb − λ

DA
tn + µ̄

G
tjb − µ

G
tjb

= 0, ∀t,∀j ∈ ψn, ∀b (3e)

−λDtdk −1λ
D
tdk + λ

DA
tn + µ̄

D
tdk − µ

D
tdk

= 0, ∀t, ∀d ∈ ψn, ∀k (3f)

Constraints (2b) and (2h) (3g)

0 ≤ VDAg
ti ⊥µ

Vg
ti
≥ 0, ∀t, ∀i (3h)

0 ≤ VDAd
ti ⊥µ

Vd
ti
≥ 0, ∀t, ∀i (3i)

0 ≤ PGtjb⊥µ
G
tjb
≥ 0, ∀t, ∀j,∀b (3j)

0 ≤ PDtdk⊥µ
D
tdk
≥ 0, ∀t, ∀d,∀k (3k)

0 ≤ V bidG
ti − VDAg

ti ⊥µ̄
Vg
ti ≥ 0, ∀t, ∀i (3l)

0 ≤ V bidD
ti − VDAd

ti ⊥µ̄
Vd
ti ≥ 0, ∀t, ∀i (3m)

0 ≤ P̄Gtjb +1P
G
tjb − P

G
tjb⊥µ̄

G
tjb

≥ 0, ∀t, ∀j,∀b (3n)

0 ≤ P̄Dtdk +1P
D
tdk − P

D
tdk⊥µ̄

D
tdk

≥ 0, ∀t, ∀d,∀k (3o)

0 ≤ C̄l +
∑
n

Hnl

 ∑
(i∈ψn)

(VDAg
ti − VDAd

ti )

+

∑
(j∈ψn)

∑
b

PGtjb

−

∑
(d∈ψn)

∑
k

PDtdk


⊥ϑ tl ≥ 0, ∀t, ∀l (3p)

0 ≤ C̄l −
∑
n

Hnl

 ∑
(i∈ψn)

(VDAg
ti − VDAd

ti )

+

∑
(j∈ψn)

∑
b

PGtjb

−

∑
(d∈ψn)

∑
k

PDtdk


⊥ϑ tl ≥ 0, ∀t, ∀l (3q)

Complementarity constraints related to inequality con-
straints are stated by (3h)–(3q) which are nonlinear equations,
which can be linearized using the Fortuny-Amat transforma-
tion (BigMmethod) described in [29], [30]. Thus, each of the
equations of 0 ≤ Vti⊥dti(x) ≥ 0 can be rewritten as follows.

0 ≤ Vti ≤ Mtiωti, 0 ≤ dti(x) ≤ (1− ωti)Mti

where Mti is a large number and ωti is a binary variable.
Therefore, the equivalent model will be asModel (4).

B. EQUIVALENT MILP FORMULATION (Model (4))

Objective Function (3a) (4a)

Subject to:

Constraints (3b)–(3g) (4b)
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Linearized form of (3h)–(3q) based on Big M method

(4c)

Now, the only nonlinear equation inModel (4) is the objec-
tive function, which is expressed explicitly with regard to
uncertainties (0). To linearize the objective function, at the
first step, it needs to be described implicitly based on 0,
which can be done using the SDT [15]. Due to the linearity
of the inner problem, SDT can provide an objective function
that has a zero duality-gap with the primal objective function
value at the optimal point [31]. Doing some mathematical
simplification, the objective function (4a) can be implicitly
expressed with respect to the uncertain variables 0 as follows
(equation (4a)):

Min
�

Max
0

∑
t

[∑
d

∑
k

(
λDtdk +1λ

D
tdk

)
PDtdk

−

∑
i

(
λRTtn +1λ

RT
tn

)
)(VDAg

ti − VDAd
ti )

−

∑
j

∑
b

(
λGtjb +1λ

G
tjb

)
PGtjb

−

∑
j

∑
b

µ̄Gtjb

(
P̄Gtjb +1P

G
tjb

)
−

∑
d

∑
k

µ̄Dtdk

(
P̄Dtdk +1P

D
tdk

)
−

∑
l

C̄l
(
ϑ tl + ϑ tl

)]
Therefore, Model (4) represents the single level nonlinear

max-min problem. In order to remove the nonlinearities in
the objective function, duality theorem is used here. Since the
internal optimization problem (which is with regard to uncer-
tain set) is linear, the dual form of that can be replaced. This
procedure is fully illustrated in [32]. Employing this approach
to Model (4) leads us to the following linear maximization
form (Model (5)).

C. FINAL MODEL (Model (5))

Max
�,8

Z

8 = {ρ̄RTtn , ρ
RT
tn
, η̄Gtjb, η

G
tjb
, η̄Dtdk , η

D
tdk
,

θ̄Gtjb, θ
G
tjb, θ̄

D
tdk , θ

D
tdk , χ̄

G
tjb, χ

G
tjb
, χ̄Dtdk , χ

D
tdk
,

and all dual variables of the LL subproblem} (5a)

Subject to: ∑
t

[∑
d

∑
k

{
τDdkλ

D
tdk

(
θ̄Dtdk − θ

D
tdk

)
+ σDdk P̄

D
tdk

(
η̄Dtdk − η

D
tdk

)
+ λDtdkP

D
tdk − µ̄

D
tdk P̄

D
tdk

}
+

∑
i

{
ζRTn λRTtn

(
ρ̄RTtn − ρ

RT
tn

)

− λRTtn (VDAg
ti − VDAd

ti )
}

+

∑
j

∑
b

{
τGjbλ

G
tjb

(
θ̄Gtjb − θ

G
tjb

)
+ σGjb P̄

G
tjb

(
η̄Gtjb − η

G
tjb

)
− λGtjbP

G
tjb − µ̄

G
tjbP̄

G
tjb

}
−

∑
l

C̄l
(
ϑ tl + ϑ tl

)]
≥ Z (5b)

Constraints (4b) and (4c) (5c)

ρ̄RTtn + ρ
RT
tn
= VDAd

ti − VDAg
ti , ∀t, ∀i ∈ ψn

(5d)

sigmaGjbP̄
G
tjb

(
χ̄Gtjb − χ

G
tjb

)
≥ PGtjb

−P̄Gtjb, ∀t, ∀j, ∀b (5e)

σDdk P̄
D
tdk

(
χ̄Dtdk − χ

D
tdk

)
≥ PDtdk

−P̄Dtdk , ∀t, ∀d, ∀k (5f)

σGjb P̄
G
tjb

(
χ̄Gtjb − χ

G
tjb

)
≤

(
1− ω̄Gtjb

)
MP

+PGtjb − P̄
G
tjb, ∀t, ∀j, ∀b (5g)

σDdk P̄
D
tdk

(
χ̄Dtdk − χ

D
tdk

)
≤

(
1− ω̄Dtdk

)
MP

+PDtdk − P̄
D
tdk , ∀t,∀d, ∀k (5h)

τGjbλ
G
tjb

(
π̄Gtjb − π

G
tjb

)
= λDAtn − λ

G
tjb

−µ̄Gtjb + µ
G
tjb
, ∀t, ∀j, ∀b (5i)

τDdkλ
D
tdk

(
π̄Dtdk − π

D
tdk

)
= −λDAtn + λ

D
tdk

−µ̄Dtdk + µ
D
tdk
, ∀t, ∀d, ∀k (5j)

η̄Gtjb + η
G
tjb
= −µ̄Gtjb, ∀t, ∀j, ∀b (5k)

η̄Dtdk + η
D
tdk
= −µ̄Dtdk , ∀t, ∀d, ∀k (5l)

θ̄Gtjb + θ
G
tjb = −P

G
tjb, ∀t, ∀j, ∀b (5m)

θ̄Dtdk + θ
D
tdk = PDtdk , ∀t, ∀d, ∀k (5n)

χ̄Gtjb + χ
G
tjb
= −1, ∀t, ∀j, ∀b (5o)

χ̄Dtdk + χ
D
tdk
= −1, ∀t, ∀d, ∀k (5p)

π̄Gtjb + π
G
tjb = −1, ∀t, ∀j, ∀b (5q)

π̄Dtdk + π
D
tdk = −1, ∀t, ∀d, ∀k (5r){

ρ̄RTtn , χ̄
G
tjb, χ̄

D
tdk , π̄

G
tjb, π̄

D
tdk , η̄

G
tjb, η̄

D
tdk , θ̄

G
tjb, θ̄

D
tdk

}
≤ 0{

ρRT
tn
, χG

tjb
, χD

tdk
, πGtjb, π

D
tdk , η

G
tjb
, ηD

tdk
, θGtjb, θ

D
tdk ≥ 0

}
In Model (5), constraints (5b), (5d), and (5k) - (5n) are the

dual forms of the objective function (4a) with respect to its
corresponding constraints (1f) – (1j). Lagrangian coefficients
of these constraints are ρ̄RTtn , ρRT

tn
, η̄Gtjb, η

G
tjb
, η̄Dtdk , η

D
tdk

, θ̄Gtjb,

θGtjb, θ̄
D
tdk , and θ

D
tdk . Constraints (5e) – (5j) are the dualized

constraints of the primal constraints (2e), (2f), (3n), (3o), (3e),
and (3f). Dualized equations of constraints (1g) – (1j) are

334 VOLUME 8, 2021



Mehdipourpicha et al.: Developing Robust Bidding Strategy for Virtual Bidders in Day-Ahead Electricity Markets

FIGURE 3. Five-bus test system.

TABLE 1. Forecasted RT price for different buses.

TABLE 2. Forecasted generators offer quantities and prices.

stated as (5o) – (5r), respectively. Variables χ̄Gtjb, χ
G
tjb
, χ̄Dtdk ,

χD
tdk

, π̄Gtjb, π
G
tjb, π̄

D
tdk , and π

D
tdk are the Lagrangian coefficients

of (1f) – (1j) to evaluate the dual of constraints (2e), (2f),
(3e), (3f), (3n), and (3o). With this method, which is well
described in [32], the robust two-level optimization problem
is converted to a single level MILP problem which can be
solved by available commercial solvers.

IV. ILLUSTRATIVE EXAMPLE
The considered test system is illustrated in Fig. 3. This system
includes 5 generators, 3 loads, and 6 transmission lines. It is
assumed that the virtual bidder attends to submit its bids from
two locations (bus B and bus E) to the DA market.

For the sake of simplicity, it is assumed that the prob-
lem is solved for one period, and the corresponding fore-
casted RT prices ($/MWH) for different buses are shown
in Table 1. Forecasted generators‘/loads’ offers/bids are sum-
marized in Table 2 and Table 3, respectively.

Line capacities are assumed to be 400MW for the line A-B,
240MW for the line D-E, and 100MW for the rest of the lines.
All robustness parameters are 0.1, and V budget

ti is 200MW for
virtual bids maximum offers/bids.

Solving the Deterministic model (Note that the Determin-
istic model can be obtained by setting all robustness parame-

TABLE 3. Forecasted loads bid quantities and prices.

TABLE 4. Deterministic and robust models results in the
worst-case scenario.

ters to zero), the virtual bidder’s strategy would be 28.14MW
generation at the price of $57.57/MWH at bus B, and 200MW
generation at the price of $20/MWH at bus E. As it is shown
in Table 4, if we test the Deterministic model results in the
worst-case scenario, none of these virtual bids are cleared
since, in this case, these bid prices are higher than the LMP
of the system at the corresponding nodes.

On the contrary, the bidding strategy of the virtual bidder
is completely different when he/she applies the proposed
model (Model (5)). As this model considers the occurrence
of the worst-case scenario, its solution will be optimal in
this scenario. The worst-case scenario happens when the L1
and G5 are the marginal MPs at buses B and E, respectively.
As the robustness parameters are 0.1, the LMPs will be
$66/MWH at bus B and $18/MWH at bus E, in the worst-
case scenario. Therefore, virtual bidder bids as a demand
at bus B at the price of $66/MWH and as a generator
at bus E at the price of $18/MWH to be cleared in the
DA market in this situation. As a result, the total profit
of the virtual bidder is $404 using the proposed robust
model at the worst-case scenario, while the profit would be
zero when bids obtained from the Deterministic model are
used.

V. CASE STUDY
A. DATA AND CASES SETUPS
The proposed approach is implemented on the IEEE 24-bus
Reliability Test System [33] (Fig. 4). This system includes
24 buses, 32 generators, 17 demands, and 38 transmission
lines. A virtual bidder is assumed to bid from 5 different loca-
tions (buses #6, #11, #14, #16, #22). Suppose the maximum
bid quantity that virtual bidder can bid in the DA market is
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TABLE 5. Forecasted offer quantities and prices of other generating units.

TABLE 6. Different cases design for uncertainties (%).

60MW, which is determined according to the proxy amount
owned by the virtual bidder [7]. Forecasted Real-Time LMP
at different locations and periods are presented in Fig. 5. Offer
quantities and prices of other generation units are represented
in Table 5, which are assumed to be the same for all periods.
Forecasted loads’ bid quantities are depicted in Fig. 6, and
their corresponding predicted bid prices is shown in Fig. 7.
Note that this predicted bid price profile is considered the
same for all loads.

We designed 9 different cases to present the effectiveness
of the proposedmodel. The first case is the Deterministic case
in which all robustness parameters are zero. In Cases 2 – 6,
just one robustness parameter is assumed to be non-zero, and
in other Cases (Cases 7 – 9), all robustness parameters are
non-zero. Cases 7 – 9 are designed to present the benefit of
the proposed robust model in the highly uncertain situation.
Table 6 summarizes the designed cases.

B. RESULTS AND DISCUSSION
We solved the designed cases, explained in the previ-
ous section, with the proposed Model (5). Moreover, for

FIGURE 4. IEEE 24-bus test system.

comparison purpose, the Deterministic model results were
tested at the worst-case situations. As it is shown in Fig. 8,
the total profit of virtual bidder is always higher than the
profit this MP can obtain from the Deterministic model. This
is because the Deterministic model results are not applicable
in the worst-case scenario and most of the time, they are not
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FIGURE 5. Forecasted RT market LMP at different buses and periods.

FIGURE 6. Forecasted loads quantities at different periods.

FIGURE 7. Forecasted bid prices for all loads at different periods.

cleared in the DA market, which leads to lower profit. There-
fore, a risk-averse virtual bidder would prefer to apply the
Robust-based solution in situations with uncertain sources.

All tests were performed on a computer with a 3.2 GHz
Intel Core i7 CPU and 32GB of RAM. The models were
implemented in AIMMS 4.75.1.0 [34] and solved using

TABLE 7. Number of variables, constraints and CPU clock times
of the deterministic and robust models.

CPLEX 12.10 [35]. The number of variables, constraints,
and CPU clock times regarding the deterministic model and
robust model are summarized in Table 7.

To present the influence of the virtual bids on the DA mar-
ket prices, DA LMPs at two selected buses where the virtual
bidder places its bids (buses 6 and 22), are shown in Fig. 9.
Note that these prices are captured in the worst-case scenario.
As seen from Fig. 9, the predicted RT LMP at bus 6 is higher
than the DA LMP before placing the virtual bids. Using the
deterministic model, virtual bids cause a reverse divergence
between RT and DA LMPs at multiple hours, which results
in a negative profit for the virtual bidder. However, there is a
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FIGURE 8. Total profit of the virtual bidder using deterministic
and robust optimization at the worst-case scenario of different
test cases.

reasonable convergence between RT and DA LMPs when the
robust optimization results are applied by the virtual bidder.
The same situation applies to LMPs at bus 22, except that the
predicted RT price is smaller than the DA LMP before virtual
bids.

A sensitivity analysis has been done here to find the most
critical uncertain parameter which can highly affect the total
profit. Therefore, the Profit Change is calculated using equa-
tion (6) for designedCases 2 – 6. In each of the cases, only one
of the uncertainty parameters is considered. In equation (6),
Rd is the profit of Deterministic result in the forecasted sce-
nario, andRt is the profit of the Deterministic/Robust models’
results testing in the worst-case scenario.

Profit Change =
|Rd − Rt |

Rd
× 100 (6)

As it is seen in Fig. 8, the profit obtained from the Deter-
ministic result in the forecasted scenario (Case 1) is $175,635,
while the profit of the virtual bidder is $133,974 when
applying the Robust-based results in the worst-case scenario
(Case 2). Thus, the profit change is 23.72% for this designed
case. Fig. 10 compares the profit changes calculated for
Cases 2 – 6 for both deterministic-based and Robust-based
results tested at the worst-case scenarios. It is obvious that
the higher the profit change is, the greater the impact of
the corresponding parameter on the total profit. Therefore,
as shown in Fig. 10, RT LMP has the greatest influence on
the total profit of the virtual bidder.

In order to observe the performance of the proposedmodel,
this model has been tested with different levels of uncertainty
(Cases 7 – 9). As shown in Fig. 11, the difference between the
profits attained from the proposed model and deterministic
model results will rise as the level of uncertainty increases.
Note that, in these tests, the worst-case scenario was utilized
to evaluate the results of the robust and deterministic models.

FIGURE 9. RT price, DA price before virtual bids, DA price with
virtual bids using deterministic model, and DA price with virtual
bids using the robust model at bus 6 (a) and bus 22 (b).

FIGURE 10. Profit change in cases 2–6.

Therefore, the outcome of deterministic model results may
change when the uncertainty level changes.

The improvement in profit, which is calculated by
equation (7), represents the advantages of applying the pro-
posed model specifically for the risk-averse virtual bidders
who consider the higher confidence interval for the uncertain
parameters. Fig. 11 shows that the improvement in profit
reaches 50% when the virtual bidder chooses 0.3 for the
robustness parameters in his/her decision-making process.
It clearly demonstrates the benefits of the proposed model.
In equation (7), Rr is the profit of the robust-based model,
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FIGURE 11. Profit comparison between the deterministic model
and robust model results tested at the worst-case scenario with
different level of uncertainty.

and R′d is the profit of the Deterministic model results testing
at the worst-case scenario.

Improvement in profit =

∣∣Rr − R′d ∣∣
Rr

× 100 (7)

VI. CONCLUSION
In this paper, a max-min two-level optimization model is
presented to optimize the bidding strategy for a risk-averse
virtual bidder taking part in the DA market. Duality theorem,
KKT optimality conditions, SDT, and the big-M method are
employed to translate the two-level problem into a MILP
problem. As the lower-level subproblem of the model rep-
resents the quasi DA market, a virtual bidder can mimic
the market clearing process and can appropriately make bid-
ding decisions to its best interest. Therefore, through the bid
price, a virtual bidder can effectively compromise between
the amount of cleared virtual bids and the affected price
difference between the DA and RT markets considering the
uncertainties of other MPs’ strategies and RT market LMPs.
Numerical results and sensitivity analysis show that RT LMP
is the most critical uncertain parameter that the virtual bid-
der needs to consider in his/her decision-making procedure.
Moreover, as compared to using the deterministic model,
a risk-averse virtual bidder can always make more profit
at the worst-case scenario employing the proposed model,
and the improvement in profits increases dramatically as the
uncertainty level increases.
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